MAE

3D Printer Magnetization Head For Microscale Applications

MAE

Currently, there is a technological gap in the manufacturing processes for magnets with complex polarity patterns. Current manufacturing of magnets sacrifices the strength of the magnet to maintain a small size, and vice versa. The 2D Magnetization Head will be able to manufacture small, powerful magnets with complex geometries. Users interact by operating software which actuates the microcontroller, controlling the strength of the magnetic field produced as well as the motion of the gantry that the magnetization head is attached to.

Remotely Operated Vehicle - ROV - Team 15A

3-D CAD Image of our ROV
MAE

A.R.C.H.E.L.O.N.

Advanced Remote Controlled Hydrodynamic Explorer of Logistics & Oceanic Navigator

Background

HyperXite Pod Transport Vehicle

MAE

Established in 2015 at the University of California Irvine, HyperXite is a team of undergraduate students endeavoring to build a small-scale Hyperloop pod. As such HyperXite requires a vehicle that will allow us to easily transport our 300kg pod to different locations in addition to serving as a workstation to service and assemble the vehicle during the building stages.

Our Goal as a sub-team within HyperXite is to design, build, and test a vehicle that is capable of transporting, lifting, and servicing the pod regardless of our location or equipment on hand.

Minimally Actuated Walker

Physical Prototype Model
MAE

The team nine senior design project has been tasked with designing and building two revisions of a minimally actuated robot walker. In the first half of the project the team was tasked with designing a walker with eight legs, two DC motors, and IR remote control. Upon completion of this revision at the end of the fall quarter, the team changed focus under the direction of Professor McCarthy, the project sponsor. The refined objective shifted to building a new robot walker with four legs, two DC motors, and more complex autonomous control abilities. Robot autonomy was made possible through Arduino control and PixyCam robot vision, enabling line and object tracking. The overall goal of the project was to achieve a robust and high functioning robot with control autonomy in order to further the research conducted by Professor McCarthy and his graduate student Jiaji Li.

Automatic Pickleball Launcher

Pickleball Team Logo: The Aces
MAE

Practicing pickleball alone is tedious and ineffective. Current models on the market are too expensive and do not provide essential features for pickleball play/practice. Our project is to design an inexpensive machine that can replicate realistic pickleball trajectories that would be observed in a game. This includes adjustable speed, spin, angle, launch height, and feed rate. Our niche however is a 3-wheel design, allowing our machine to launch pickleball with sidespin, a feature that current models on the market do not have. All parts used to create the machine will either be commercially available or will be replicable using online services. 

2-Validation of a Numerical Prediction Method for Aerodynamics

MAE

The project aims at testing the level of relativity between values of airfoil performance from prediction and the one in reality. Through the airfoil analysis tool (XFOIL), the team will simulate a numerical airfoils and obtain the values from the prediction. In the meanwhile, the team should design and manufacture the corresponding airfoils that are valid for wind tunnel test. Finally, the team will compare the results from the two methods and apply Technology Readiness Levels (TRL) to evaluate the conclusion relativity between prediction and reality.

Bottle Lift and Transfer Project

MAE

Our project objective is to design and build a vertical lift system to transport a 16 oz plastic water bottle. The bottle must maintain its upright position, from a starting height no greater than 2 inches up to a platform positioned between 8 and 12 inches above the table surface. With the system on a budget of $250, there is an emphasis on the system being simple in design and use. Due to a 10 week design and assembly timeline the design must be easy to manufacture. And an overall goal to have the robot move quickly, reliably, freestanding, automated and battery-powered.

Self-stabilization Geometries for Two Wheeled Locomotion

MAE

In this project, we are creating a control system, with the end goal of having an autonomous electric bicycle that makes use of the self-stabilizing geometries of two wheeled vehicles. This control system will consist of mostly off the shelf parts, such as a pre-built remote control bicycle, a Raspberry Pi, gyroscopic sensors and compass magnetometer sensors. They will all connect in order to sense the speed, lean angle and position of the bike. With this information, the microcontroller will change the steering angle accordingly to stabilize the bicycle.

Home Ventilation

Model Replica of Testbed via SketchUp
MAE

Standard home thermal management systems consume a significant amount of energy. This can be costly and contributes greatly to CO2 emissions. Our project aims to test an insulated and airtight structure that maintains comfortable temperatures without heat pumps, boilers, or furnaces. 

Ventilation Nation will design a modifiable testbed in order to analyze the effects of changing different physical and functional characteristics of a home and show how models can be used to improve ventilation-only performance. Our goal is to use this testbed as proof of concept for the feasibility of a real-world ventilation-only home thermal management system.

Origami Structured Vascular Anastomosis Surgery Robot

MAE

Summary

For this project, we aim to design a robot with the ability to fold and maneuver four legs while being equipped with the tools necessary to perform a suture. This device aims to streamline the suturing process by reducing human errors and labor through robotic technology. In the event of an accident, there are many risks and time delays associated with manual treatment during a patient’s access to treatment. Modern medical devices are well equipped to deal with such issues but can be expensive and difficult to access.

UCI Rocket Project - Active Pressure Regulator

MAE

The Under Pressure Team is developing an active pressure regulator for the UCI Rocket Project. The UCI Rocket Project relies on the utilization of gaseous nitrogen to pressurize the propellant tanks of the rocket. In order to effectively manage the pressure within these tanks, pressure regulators are essential components. However, the fixed-pressure pressure regulators that have been employed by the UCI Rocket Project exhibit several inherent characteristics that hinder optimal performance. Factors such as regulator droop, choked flow effects, the influence of supply pressure, and limitations posed by orifice sizes all contribute to deviations from the desired regulator output during flight. To address these shortcomings and enhance engine performance, the integration of a component capable of self-correction to maintain a consistent outlet pressure is necessary.

Bottle Lift and Transfer: Team 17D

MAE

The Bottle Lift and Transfer project is a one-quarter project of MAE 151A. The primary objective of this endeavor is to engineer a mechanism capable of lifting a standard, unopened 16-ounce water bottle vertically and transferring it horizontally onto a predetermined platform. The device is mandated to operate entirely autonomously, powered by batteries, and be able to possess repeatability in its actions.

To meet these stringent criteria, this team devised and fabricated a sophisticated system comprising a scissor lift mechanism for vertical movement and a linear actuator to facilitate horizontal transfer. The intricate motions are orchestrated and controlled by an Arduino UNO board, leveraging IR sensors to signal the controller and dictate halts during the vertical ascent.

Safely Dispensing Radioactive Powder for Spine-Rad™ Brachytherapy Bone Cement

MAE

On-market treatment of spinal bone tumors causes spinal cord & organ damage, decreasing quality of life for ~200K patients. Spine-Rad Brachytherapy Bone Cement uses radioactive bone cement to avoid these negative effects. The treatment has been proven to work & needs to be safely manufacturable. We will be creating a system that scores & snaps open a glass vial full of radioactive powder (P-32-HA) used for the treatment and dispense a user-specified amount of the powder into a syringe used for the treatment. Without an automated procedure and process for a technician to score, snap, and dispense the powder, they would be put at risk for radiation because of the beta emissions.

UCI Cargo Plane - Structural Optimization

MAE

UCI Cargo Plane is a senior design project aiming to develop a lightweight RC aircraft capable of taking off, maneuvering, and landing with the heaviest payload possible to compete in the International SAE Aero Design competition. Our MAE151 project acts as an auxiliary unit to the team by providing additional analysis of the two major load-bearing structures in the aircraft: the cargo bay fuselage beam and the primary spar structures for next year’s aircraft. With our analysis, UCI Cargo Plane will be able to develop an aircraft with a larger strength to weight ratio for future competitions, allowing for increased payload capacity. 

Automation of Characterization of Hemispheric Resonator Gyroscopes

MAE

The process of characterizing the vibrational modes of Hemispheric Resonator Gyroscopes (HRGs), such as finding the principal axis of elasticity and damping, is time-intensive and requires manual input. To reduce human involvement, we have developed a method of tracing the inner rim of the HRG with a measurement laser utilizing an image recognition machine learning algorithm. Automated controls collect the data for the trial, reducing the manual involvement to setting up the run. The underpinnings of this project are high-precision controls, computer vision, machine learning, and data acquisition.

Hydrovision

MAE

Renewable Hydrogen is a possible alternative fuel to natural gas that can be used in gas turbines without producing greenhouse gas emissions. However, all combustion processes produce NOx, which is a harmful air pollutant and isn’t very well studied for Hydrogen. Our sponsor seeks to better understand hydrogen combustion by examining the interaction between hydrogen flames, but lacks the equipment to fully study every region in the flame. Thus, we are tasked to design a mechanical device that moves a camera around the flames to capture the reaction, protects the device from the high temperature of the flames, and processes those images to create a 3D heat release map of the high temperature regions. This way, the researchers can pinpoint where the regions of NOx will occur based on these images and figure out ways to reduce the regions of high NOx production. 

Bike Frame Project

MAE

Over the winter and spring quarters, our project focuses on designing and manufacturing an affordable, DIY-friendly full suspension mountain bike for garage-level construction. 

We've finalized decisions on suspension and frame design, emphasizing manufacturability. Currently, we're refining designs for compatibility and performance, initiating proof of concept trials, and developing welding skills. Future steps include completing a comprehensive CAD model, sourcing components, fabricating a welding jig, welding the frame, assembling components, and showcasing finalized design. This project fosters collaborative innovation and empowers makers to shape the future of mountain biking technology

Inertial Compensation Unit - Conservation of Momentum Gimbal

MAE

In order for satellites in orbit to maintain its heading to Earth, they utilize gimbals. Gimbals stabilize the payload which allow it to consistently point in the same direction even in motion. ICU is a MAE 151A/B project team in which we are developing a gimbal and counter gimbal mechanism to enable gimbal motion on small spacecraft without affecting attitude. The gimbal will be placed in low earth orbit in a 1U box with a high resolution camera to capture visual data of Earth. We are sponsored by Aaron Freeman and David Reeves of General Atomics who provide us industry knowledge and access to professional hardware.

Electro Permanent Magnet

MAE

The Army Research Lab (ARL) has been working on wireless charging methods for drones and needs a way to easily attach and detach their drones from the charging point without taking too much power and space on the drone. Electropermanent magnets can be turned on and off but do not require constant power in the on stage which would be too strenuous on the drone. The ARL tasked UCI with developing a way to magnetically connect the drone to the charge surface quickly and have found EPMs to be the most viable option for this.

Glide&Slide - Bottle Lift and Transfer Project - Team17B

MAE

This is an automotive bottle lifting project. The bottle lift device needs to be compact, free-standing, and battery-operated. It may not extend underneath the landing platform and must allow for the bottle to start no greater than 2" from the ground. The lift must maintain the bottle's upright position throughout the journey and landing on the platform. Once the water bottle is placed onto the landing platform within the landing box, the lift must return to its original position and be ready to repeat the motion. Our design aims to be cheap, efficient, and effective while providing the same features as traditional assembly line devices. 

 

Bottle Lift and Transfer - Team 17A

MAE

Main Purpose: Finding an autonomous way of material transportation to improve a menial, repeatable task to improve efficiency in a manufacturing/packaging process

 

For this project, our main objective is to make a bottle lift and transfer mechanism that will transfer a 16oz water bottle from the ground onto a platform that is 8”-12” off the ground. The platform is a rectangular table of 8.5” x 9.5” with a thickness of 0.75”. The design is meant to be placed on the platform and retracts down again so that it can receive another bottle. To accomplish this, the mechanism would need to be able to move vertically to the platform height, but also transfer the bottle horizontally to make space for another bottle.

Planar Laser Induced Fluorescence (PLIF) System for the Study of High-Speed Reacting Flows

Combustion Crew Team Logo
MAE

The Combustion Crew, Team 14 with MAE 151B, is working to develop a Planar Laser-Induced Fluorescence system for their sponsor, Dr. Xian Shi at the X Energy Laboratory at the University of California, Irvine. Building on Dr. Shi's existing high-speed reacting flow experimental setup, the team research and design a compatible PLIF system given the complexities of studying detonation phenomena. The system, designed to target the hydroxyl (OH) radical, will serve as a combustion diagnostics tool alongside an existing Schlieren imaging system.

Wearable Gait Analysis Device

Team Stride Insight
MAE

The goal of this project is to develop an easy-to use, wearable, stand-alone device for gait assessment that can be sent home with patients and used continuously for at least 1 hour prior to recharging. The system needs to have an insole that measures user ground reaction forces and a soft interface to be worn around the ankle and calf to measure ankle angle and activity of at least two muscles: the tibialis anterior and the soleus or one of the gastrocnemius (calf) muscles. Processed data must be available to download after use that can be understood and analyzed by the wearer’s physician. The following pages will serve as a record of the work accomplished week-by-week including meeting notes, results from testing, and team discussions.

Better Than Crutches!

MAE

The Better than Crutch is project 16 of Winter 2024 MAE151A/B Mechanical Engineering design projects. In this innovative project, we aim to revolutionize mobility assistance by developing an automatic crutch that adjusts its height according to the user's needs. This state-of-the-art crutch provides unparalleled support and ease for individuals facing mobility challenges, especially when navigating complex terrains such as stairs, slopes, and uneven surfaces. This crutch is engineered for ergonomic comfort and user-friendly operation, reducing physical strain and enhancing the user's confidence and independence. Our project represents a significant leap in assistive technology, promising to substantially improve the quality of life for crutch users by offering a safer, more adaptable, and user-centric mobility solution.

Long Range Drone

MAE

The Long Range Drone is project 12 of the Fall 2023 MAE 151A/B Mechanical Engineering design projects. In this project, the team is expected to design a fixed-wing aircraft-like drone that is capable of maximizing flight distance and/or flight duration given a limited battery capacity with the current technology. In addition to designing a drone, the team is expected to develop a launcher that is capable of providing an initial boost to help the drone reach an optimal initial height using an elastic band releasing system. Once launched, the drone will transition to a gliding phase, minimizing the usage of battery while sustaining leveled flight.

Solar Airplane

MAE

Mission Statement: Team 11B, Solar Airplane, seeks to create an RC solar airplane powered entirely from solar panels and battery power mounted on the aircraft for the purpose of demonstrating the efficacy of solar panels on extending flight duration.

 

Equitable Design Solutions

Equitable Design Solutions
MAE

In an effort to increase accessibility in the classroom, we were tasked with redesigning the tablet arm desktops in UCI’s lecture halls. These desks, currently small and non-adjustable, lack consideration for left-handed individuals and students of various sizes. Our redesign features an armrest with three levels, allowing 3.5” of height adjustment and 4” of  depth adjustment. This flexibility, along with a fold-out desktop that provides 50% more surface area than the current design, should improve the classroom experience  for students of all proportions and handedness, allowing them to focus completely on learning.

Pages

Subscribe to RSS - MAE