Projects

2024 E-Bike Battery Optimization - Team 13

EBBO
MAE

Summary: 

In partnership with Saratech and the UCI Battery Lab, our project focuses on optimizing E-Bike batteries. We've selected lithium-ion batteries for their high energy density, long cycle life, and lightweight nature, ideal for electric bike applications. Specifically, we are opting for cylindrical battery types over prismatic and pouch cell types in order to prioritize airflow optimization for efficient cooling.

15A Remotely Operated Underwater Robotic Vehicle (ROV)

MAE

Coastal areas in California attract millions of tourists a year and the more crowded these areas become, the more they are prone to pollution and trash build up. There are a few solutions when it comes to debris collection from bodies of water. We propose an underwater remotely operated vehicle (ROV) capable of maneuvering and object retrieval. Our ROV is nicknamed Archelon and it features applications of modern technology derived from underwater ROV research.

2-Validation of a Numerical Prediction Method for Aerodynamics

MAE

The project aims at testing the level of relativity between values of airfoil performance from prediction and the one in reality. Through the airfoil analysis tool (XFOIL), the team will simulate a numerical airfoils and obtain the values from the prediction. In the meanwhile, the team should design and manufacture the corresponding airfoils that are valid for wind tunnel test. Finally, the team will compare the results from the two methods and apply Technology Readiness Levels (TRL) to evaluate the conclusion relativity between prediction and reality.

3D Printer Magnetization Head For Microscale Applications

MAE

Currently, there is a technological gap in the manufacturing processes for magnets with complex polarity patterns. Current manufacturing of magnets sacrifices the strength of the magnet to maintain a small size, and vice versa. The 2D Magnetization Head will be able to manufacture small, powerful magnets with complex geometries. Users interact by operating software which actuates the microcontroller, controlling the strength of the magnetic field produced as well as the motion of the gantry that the magnetization head is attached to.

Aspiration Ureteroscope: a medical surgical instrument for removal of kidney stones

MAE

A ureteroscope is a thin, flexible tube inserted into the ureter to access and remove kidney stones. At the moment, the surgical procedure for ureteroscopy is one that is laborious and does not remove enough kidney stones leading to repeat procedures for patients. We are remaking a ureteroscope with a larger diameter of 4.667mm with the goal of maximizing the aspiration channel, the channel where the kidney stones are suctioned out from, to achieve more stone removal. Our next goals will be to also have a non-clogging device, minimize all possible components to maximize aspiration channel even further and redesign the tip to allow the laser to access all stones more easily. 

Automatic Pickleball Launcher

Pickleball Team Logo: The Aces
MAE

Practicing pickleball alone is tedious and ineffective. Current models on the market are too expensive and do not provide essential features for pickleball play/practice. Our project is to design an inexpensive machine that can replicate realistic pickleball trajectories that would be observed in a game. This includes adjustable speed, spin, angle, launch height, and feed rate. Our niche however is a 3-wheel design, allowing our machine to launch pickleball with sidespin, a feature that current models on the market do not have. All parts used to create the machine will either be commercially available or will be replicable using online services. 

Automation of Characterization of Hemispheric Resonator Gyroscopes

MAE

The process of characterizing the vibrational modes of Hemispheric Resonator Gyroscopes (HRGs), such as finding the principal axis of elasticity and damping, is time-intensive and requires manual input. To reduce human involvement, we have developed a method of tracing the inner rim of the HRG with a measurement laser utilizing an image recognition machine learning algorithm. Automated controls collect the data for the trial, reducing the manual involvement to setting up the run. The underpinnings of this project are high-precision controls, computer vision, machine learning, and data acquisition.

Better Than Crutches!

MAE

The Better than Crutch is project 16 of Winter 2024 MAE151A/B Mechanical Engineering design projects. In this innovative project, we aim to revolutionize mobility assistance by developing an automatic crutch that adjusts its height according to the user's needs. This state-of-the-art crutch provides unparalleled support and ease for individuals facing mobility challenges, especially when navigating complex terrains such as stairs, slopes, and uneven surfaces. This crutch is engineered for ergonomic comfort and user-friendly operation, reducing physical strain and enhancing the user's confidence and independence. Our project represents a significant leap in assistive technology, promising to substantially improve the quality of life for crutch users by offering a safer, more adaptable, and user-centric mobility solution.

Bike Builders

MAE

Many engineering students go through college without getting proper hands-on experience in the field. Therefore, we aim to give undergraduates the knowledge and experience to design, manufacture, and test their own bicycles. The club is applying knowledge from the classroom such as materials, mechanical stress, and CAD to a real-world industry application. Students who are currently participating often find direct correlations to the classroom when talking about manufacturing techniques.

Bike Frame Project

MAE

Over the winter and spring quarters, our project focuses on designing and manufacturing an affordable, DIY-friendly full suspension mountain bike for garage-level construction. 

We've finalized decisions on suspension and frame design, emphasizing manufacturability. Currently, we're refining designs for compatibility and performance, initiating proof of concept trials, and developing welding skills. Future steps include completing a comprehensive CAD model, sourcing components, fabricating a welding jig, welding the frame, assembling components, and showcasing finalized design. This project fosters collaborative innovation and empowers makers to shape the future of mountain biking technology

Bottle Lift and Transfer - Team 17A

MAE

Main Purpose: Finding an autonomous way of material transportation to improve a menial, repeatable task to improve efficiency in a manufacturing/packaging process

 

For this project, our main objective is to make a bottle lift and transfer mechanism that will transfer a 16oz water bottle from the ground onto a platform that is 8”-12” off the ground. The platform is a rectangular table of 8.5” x 9.5” with a thickness of 0.75”. The design is meant to be placed on the platform and retracts down again so that it can receive another bottle. To accomplish this, the mechanism would need to be able to move vertically to the platform height, but also transfer the bottle horizontally to make space for another bottle.

Bottle Lift and Transfer Project

MAE

Our project objective is to design and build a vertical lift system to transport a 16 oz plastic water bottle. The bottle must maintain its upright position, from a starting height no greater than 2 inches up to a platform positioned between 8 and 12 inches above the table surface. With the system on a budget of $250, there is an emphasis on the system being simple in design and use. Due to a 10 week design and assembly timeline the design must be easy to manufacture. And an overall goal to have the robot move quickly, reliably, freestanding, automated and battery-powered.

Bottle Lift and Transfer: Team 17D

MAE

The Bottle Lift and Transfer project is a one-quarter project of MAE 151A. The primary objective of this endeavor is to engineer a mechanism capable of lifting a standard, unopened 16-ounce water bottle vertically and transferring it horizontally onto a predetermined platform. The device is mandated to operate entirely autonomously, powered by batteries, and be able to possess repeatability in its actions.

To meet these stringent criteria, this team devised and fabricated a sophisticated system comprising a scissor lift mechanism for vertical movement and a linear actuator to facilitate horizontal transfer. The intricate motions are orchestrated and controlled by an Arduino UNO board, leveraging IR sensors to signal the controller and dictate halts during the vertical ascent.

Cargo Plane 2023-2024

EECS
MAE

Spanning several years, UCI Cargo Plane is a well-renowned project at the University of California, Irvine. This project provides a great opportunity for undergraduate and graduate students to learn the fundamentals of aircraft design, as it brings together the foundations of aerospace engineering and combines it with hands-on manufacturing experience. In our specific case, members of the UCI Cargo Plane team will learn how to design a plane that carries metal weights.

Design, Build, Fly

An anteater wearing a pilot outfit with a plane taking off in front of it. The years 2023-2024 are in the plane's path. UCI is underneath the plane and "Design Build Fly" is to the right of the anteater.
MAE

The UCI Design, Build, Fly team has been tasked with designing a plane that can complete three flight missions and one ground mission. The variance in flight missions means that the aircraft must be designed with modularity as a key focus. The flight missions for the competition this year are as follows:
Flight Mission #1: The airplane will fly with a pair of crew members made of wood dolls. It will need to complete 3 laps in a 5-minute flight window. 
Flight Mission #2: The airplane will fly with the crew members, EMTs, patient on a gurney, and medical supply cabinet in the fuselage. It will also need to complete 3 laps in a 5-minute flight window.
Flight Mission #3: The airplane will fly with the crew members and passengers as the payload. It will need to fly as many laps as possible in a 5-minute flight window.

Besides the three flight missions, the airplane also needs to perform a ground mission. The ground mission for this year is as follows:

Ground Mission: A timed mission to demonstrate efficiently changing mission configurations.

Electro Permanent Magnet

MAE

The Army Research Lab (ARL) has been working on wireless charging methods for drones and needs a way to easily attach and detach their drones from the charging point without taking too much power and space on the drone. Electropermanent magnets can be turned on and off but do not require constant power in the on stage which would be too strenuous on the drone. The ARL tasked UCI with developing a way to magnetically connect the drone to the charge surface quickly and have found EPMs to be the most viable option for this.

End of Arm Tool Interface Redesign for Archytas Automation

MAE

Robot arms rely on end of arm tooling (EOAT), such as grippers and cameras, to automate various tasks. The compatibility and swift swapping of EOATs are crucial for efficiency. Archytas' current EOAT interface requires a complicated series of steps in order to swap EOAT and lacks compatibility for EOATs with various ecosystems. Our project aims to lower the amount of parts and time needed to swap EOAT, create an interface that has compatibility with Universal Robot’s Robotic Arm, the UR3e, EOAT, update the assembly to include a larger motor, and ensure EOAT attached to our interface can function with a 1 kg payload. A significant aspect of this upgrade was designing a robust locking mechanism capable of withstanding 3D printing imperfections, offering user convenience, and providing secure support for the payload. The external lock and channel design successfully met these requirements, enhancing the overall functionality of the EOAT interface.

Equitable Design Solutions

Equitable Design Solutions
MAE

In an effort to increase accessibility in the classroom, we were tasked with redesigning the tablet arm desktops in UCI’s lecture halls. These desks, currently small and non-adjustable, lack consideration for left-handed individuals and students of various sizes. Our redesign features an armrest with three levels, allowing 3.5” of height adjustment and 4” of  depth adjustment. This flexibility, along with a fold-out desktop that provides 50% more surface area than the current design, should improve the classroom experience  for students of all proportions and handedness, allowing them to focus completely on learning.

F1 - DragMaestros

MAE

The F-1 DragMaestros project group is working in conjunction with the Anteater Formula Racing Team to design, test, and integrate a drag reduction system on the rear wing of the vehicle to improve race times and overall performance. Through a detailed design process and project management, the team will determine the best method for changing the position of the rear wing airfoils to reduce the drag coefficient while balancing the lift coefficient. Actuation of the drag reduction system (DRS) will be controlled by the driver. This two-quarter project will develop a working 3-D printed scaled prototype by the end of the Winter Quarter of 2024 and plans to integrate a full-size manufactured system by the end of the Spring Quarter of 2024. 

FUSION Engineering Project: Mobile Gesture-Controlled Robotic Arm

FUSION Engineering Project Logos
MAE

The FUSION Engineering Project is a student-run engineering project that is managed by the club organization FUSION (Filipino Undergraduate Scientists-Engineers In an Organized Network). The year long project for the '23-24 school year is a Mobile Gesture-Controlled Robotic Arm. This mobile robot will have an attached arm that has the capability of grabbing, storing, and placing objects, as well as allowing for lateral movement. Both the robot’s movement and function of the arm are to be controlled wirelessly through hand gestures.There are 5 separate teams that are working to engineer their own individual robot that will be judged at a yearly conference hosted by FUSION (FUSIONCon). 

Glide&Slide - Bottle Lift and Transfer Project - Team17B

MAE

This is an automotive bottle lifting project. The bottle lift device needs to be compact, free-standing, and battery-operated. It may not extend underneath the landing platform and must allow for the bottle to start no greater than 2" from the ground. The lift must maintain the bottle's upright position throughout the journey and landing on the platform. Once the water bottle is placed onto the landing platform within the landing box, the lift must return to its original position and be ready to repeat the motion. Our design aims to be cheap, efficient, and effective while providing the same features as traditional assembly line devices. 

 

Home Lock Management

MAE

In a market predominantly led by smart lock giants such as Ring and Nest, our senior design project aims to revolutionize home security. Current solutions face susceptibility to power outages, hacking threats, and intricate installation procedures. Our innovation introduces sensors that provide a superior, cost-effective alternative. These easily installable devices empower users to remotely monitor door lock status, offering a more reliable solution at a fraction of the cost compared to traditional smart locks. This approach not only simplifies the user experience but also addresses vulnerabilities present in existing systems, marking a significant advancement in home security technology.

Home Ventilation

Model Replica of Testbed via SketchUp
MAE

Standard home thermal management systems consume a significant amount of energy. This can be costly and contributes greatly to CO2 emissions. Our project aims to test an insulated and airtight structure that maintains comfortable temperatures without heat pumps, boilers, or furnaces. 

Ventilation Nation will design a modifiable testbed in order to analyze the effects of changing different physical and functional characteristics of a home and show how models can be used to improve ventilation-only performance. Our goal is to use this testbed as proof of concept for the feasibility of a real-world ventilation-only home thermal management system.

Human Powered Vehicle Competition at UCI

MAE

ASME hosts an endurance race that runs for 2.5 hours with many obstacles such as tight turns, uneven terrain, and inclines. HPVC at UCI will design and manufacture a recumbent, tadpole bike with a sufficient rollover protection system to keep the driver safe in case of an accident during the endurance race. The bike consists of 5 major systems: braking system, drive system, steering system, rollover protection system, and electrical system. The team has been split into three subteams: statics which consists of the bike frame, rollover protection system and seat; dynamics which consists of steering, braking, and driving; electrical which consists of the battery, electrical box and electric motor. Overall, the team aims to produce a bike that is ergonomic, safe, and easy to handle. 

While we are a senior design project, we also make sure to recruit underclassmen so they have hands-on experience and are prepared to succeed in their engineering careers. 

Hydrovision

MAE

Renewable Hydrogen is a possible alternative fuel to natural gas that can be used in gas turbines without producing greenhouse gas emissions. However, all combustion processes produce NOx, which is a harmful air pollutant and isn’t very well studied for Hydrogen. Our sponsor seeks to better understand hydrogen combustion by examining the interaction between hydrogen flames, but lacks the equipment to fully study every region in the flame. Thus, we are tasked to design a mechanical device that moves a camera around the flames to capture the reaction, protects the device from the high temperature of the flames, and processes those images to create a 3D heat release map of the high temperature regions. This way, the researchers can pinpoint where the regions of NOx will occur based on these images and figure out ways to reduce the regions of high NOx production. 

HyperXite Pod Transport Vehicle

MAE

Established in 2015 at the University of California Irvine, HyperXite is a team of undergraduate students endeavoring to build a small-scale Hyperloop pod. As such HyperXite requires a vehicle that will allow us to easily transport our 300kg pod to different locations in addition to serving as a workstation to service and assemble the vehicle during the building stages.

Our Goal as a sub-team within HyperXite is to design, build, and test a vehicle that is capable of transporting, lifting, and servicing the pod regardless of our location or equipment on hand.

Inertial Compensation Unit - Conservation of Momentum Gimbal

MAE

In order for satellites in orbit to maintain its heading to Earth, they utilize gimbals. Gimbals stabilize the payload which allow it to consistently point in the same direction even in motion. ICU is a MAE 151A/B project team in which we are developing a gimbal and counter gimbal mechanism to enable gimbal motion on small spacecraft without affecting attitude. The gimbal will be placed in low earth orbit in a 1U box with a high resolution camera to capture visual data of Earth. We are sponsored by Aaron Freeman and David Reeves of General Atomics who provide us industry knowledge and access to professional hardware.

Long Range Drone

MAE

The Long Range Drone is project 12 of the Fall 2023 MAE 151A/B Mechanical Engineering design projects. In this project, the team is expected to design a fixed-wing aircraft-like drone that is capable of maximizing flight distance and/or flight duration given a limited battery capacity with the current technology. In addition to designing a drone, the team is expected to develop a launcher that is capable of providing an initial boost to help the drone reach an optimal initial height using an elastic band releasing system. Once launched, the drone will transition to a gliding phase, minimizing the usage of battery while sustaining leveled flight.

Minimally Actuated Walker

Physical Prototype Model
MAE

The team nine senior design project has been tasked with designing and building two revisions of a minimally actuated robot walker. In the first half of the project the team was tasked with designing a walker with eight legs, two DC motors, and IR remote control. Upon completion of this revision at the end of the fall quarter, the team changed focus under the direction of Professor McCarthy, the project sponsor. The refined objective shifted to building a new robot walker with four legs, two DC motors, and more complex autonomous control abilities. Robot autonomy was made possible through Arduino control and PixyCam robot vision, enabling line and object tracking. The overall goal of the project was to achieve a robust and high functioning robot with control autonomy in order to further the research conducted by Professor McCarthy and his graduate student Jiaji Li.

Origami Structured Vascular Anastomosis Surgery Robot

MAE

Summary

For this project, we aim to design a robot with the ability to fold and maneuver four legs while being equipped with the tools necessary to perform a suture. This device aims to streamline the suturing process by reducing human errors and labor through robotic technology. In the event of an accident, there are many risks and time delays associated with manual treatment during a patient’s access to treatment. Modern medical devices are well equipped to deal with such issues but can be expensive and difficult to access.

Physical Informed Neural Network (PINN)

MAE

Summary

In this project, we developed a Physics-Informed Neural Network using PyTorch in Python to solve a specific Partial Differential Equation (Burger’s Equation in our case) under defined initial and boundary conditions. Our approach involved optimizing various parameters crucial to the neural network's performance, such as the choice of activation functions, optimizers, the configuration of neurons and layers, and the selection of an appropriate loss function.

To enhance the model's performance, we introduced a customized loss function that is divided into two components: one addressing the loss incurred by satisfying the PDEs, and the other handling the loss associated with meeting the Boundary and Initial Conditions. Through parameter tuning and training, we achieved a notable Mean Absolute Error of approximately 0.0533, surpassing the required threshold of 0.06.

Visualizations, including both 3D and 2D representations, were utilized to effectively illustrate the outcomes of our machine learning model. Our future endeavors involve refining the model further by incorporating weight coefficients into our customized loss function, aiming for even higher levels of accuracy and efficiency.

Planar Laser Induced Fluorescence (PLIF) System for the Study of High-Speed Reacting Flows

Combustion Crew Team Logo
MAE

The Combustion Crew, Team 14 with MAE 151B, is working to develop a Planar Laser-Induced Fluorescence system for their sponsor, Dr. Xian Shi at the X Energy Laboratory at the University of California, Irvine. Building on Dr. Shi's existing high-speed reacting flow experimental setup, the team research and design a compatible PLIF system given the complexities of studying detonation phenomena. The system, designed to target the hydroxyl (OH) radical, will serve as a combustion diagnostics tool alongside an existing Schlieren imaging system.

Red Hot Routers: CNC Hot Wire Foam Cutter

MAE

Background

By orienting air foils in a unique manner, downward forces can be generated on a car, providing it with the ability to increase its cornering speeds due to enhanced grip, improving its overall performance. The aerodynamics sub-team of Anteater Formula Racing (AFR) will use the foam airfoils as a base to layer composite materials on top to create a final design. 

Goals and Objectives

Remotely Operated Vehicle - ROV - Team 15A

3-D CAD Image of our ROV
MAE

A.R.C.H.E.L.O.N.

Advanced Remote Controlled Hydrodynamic Explorer of Logistics & Oceanic Navigator

Background

Safely Dispensing Radioactive Powder for Spine-Rad™ Brachytherapy Bone Cement

MAE

On-market treatment of spinal bone tumors causes spinal cord & organ damage, decreasing quality of life for ~200K patients. Spine-Rad Brachytherapy Bone Cement uses radioactive bone cement to avoid these negative effects. The treatment has been proven to work & needs to be safely manufacturable. We will be creating a system that scores & snaps open a glass vial full of radioactive powder (P-32-HA) used for the treatment and dispense a user-specified amount of the powder into a syringe used for the treatment. Without an automated procedure and process for a technician to score, snap, and dispense the powder, they would be put at risk for radiation because of the beta emissions.

Self-stabilization Geometries for Two Wheeled Locomotion

MAE

In this project, we are creating a control system, with the end goal of having an autonomous electric bicycle that makes use of the self-stabilizing geometries of two wheeled vehicles. This control system will consist of mostly off the shelf parts, such as a pre-built remote control bicycle, a Raspberry Pi, gyroscopic sensors and compass magnetometer sensors. They will all connect in order to sense the speed, lean angle and position of the bike. With this information, the microcontroller will change the steering angle accordingly to stabilize the bicycle.

Solar Airplane

MAE

Mission Statement: Team 11B, Solar Airplane, seeks to create an RC solar airplane powered entirely from solar panels and battery power mounted on the aircraft for the purpose of demonstrating the efficacy of solar panels on extending flight duration.

 

UAV FORGE

EECS
MAE

UAV Forge constitutes a multidisciplinary engineering design team with a specific focus on the comprehensive development cycle of autonomous aerial vehicles, encompassing design, manufacturing, programming, and rigorous testing. The paramount objective of this design endeavor is to adhere to the stipulated constraints, thereby enabling active participation in the SUAS 2023-2024 competition season.

UCI Cargo Plane - Structural Optimization

MAE

UCI Cargo Plane is a senior design project aiming to develop a lightweight RC aircraft capable of taking off, maneuvering, and landing with the heaviest payload possible to compete in the International SAE Aero Design competition. Our MAE151 project acts as an auxiliary unit to the team by providing additional analysis of the two major load-bearing structures in the aircraft: the cargo bay fuselage beam and the primary spar structures for next year’s aircraft. With our analysis, UCI Cargo Plane will be able to develop an aircraft with a larger strength to weight ratio for future competitions, allowing for increased payload capacity. 

UCI CubeSat

UC Irvine CubeSat
EECS
MAE

The CubeSat team at UCI is a student-led undergraduate interdisciplinary research and design project with the goal of launching a 2U nanosatellite into orbit to test a UCI research payload. The satellite operates with six main engineering subsystems: Avionics, Communications, Structures, Power, Developer Operations, and Systems, in addition to housing our research payload.

UCI Rocket Project - Active Pressure Regulator

MAE

The Under Pressure Team is developing an active pressure regulator for the UCI Rocket Project. The UCI Rocket Project relies on the utilization of gaseous nitrogen to pressurize the propellant tanks of the rocket. In order to effectively manage the pressure within these tanks, pressure regulators are essential components. However, the fixed-pressure pressure regulators that have been employed by the UCI Rocket Project exhibit several inherent characteristics that hinder optimal performance. Factors such as regulator droop, choked flow effects, the influence of supply pressure, and limitations posed by orifice sizes all contribute to deviations from the desired regulator output during flight. To address these shortcomings and enhance engine performance, the integration of a component capable of self-correction to maintain a consistent outlet pressure is necessary.

Wearable Gait Analysis Device

Team Stride Insight
MAE

The goal of this project is to develop an easy-to use, wearable, stand-alone device for gait assessment that can be sent home with patients and used continuously for at least 1 hour prior to recharging. The system needs to have an insole that measures user ground reaction forces and a soft interface to be worn around the ankle and calf to measure ankle angle and activity of at least two muscles: the tibialis anterior and the soleus or one of the gastrocnemius (calf) muscles. Processed data must be available to download after use that can be understood and analyzed by the wearer’s physician. The following pages will serve as a record of the work accomplished week-by-week including meeting notes, results from testing, and team discussions.

Wind Tunnel Force Sensor

MAE

Our team's senior design project is a design of a 6-axis wind tunnel force sensor developed for use in the University of California, Irvine's (UCI) wind tunnel facilities. The sensor is engineered to measure forces and moments exerted by the wind in six degrees of freedom: three linear forces (surge, sway, and heave) and three rotational forces (roll, pitch, and yaw). Its design and implementation are critical for accurately assessing the aerodynamic properties of various objects, ranging from aerospace components to automotive parts and even sports equipment. The sensor is a vital tool for UCI laboratory classes, as it allows students to observe interactions in real time.

Utilizing advanced materials and sensor technology, the project aims to design a reliable and affordable device for wind tunnel testing at UCI. By providing detailed data on how objects interact with wind currents under various conditions, the sensor will enable researchers and engineers to optimize designs for improved performance and efficiency. This project not only represents a significant technological advancement in aerodynamic testing but also the interdisciplinary requirement of complex engineering design.