

Purpose

The purpose of this project is to design a device that will allow visually-impaired people to read text from books, newspapers, and handwritten letters.

Problem Statement

Digital Braille displays can cost on average thousands of dollars. We look to provide an affordable, portable, modular, and efficient device to assist the visually-impaired.

Technologies

- **OpenCV** (Open Source Computer Vision)
- **Tensorflow** Machine Learning, Neural Networks
- **Python** Interpreted Programming Language
- **Raspberry Pi** Pre-Built Programmable Board

Schedule

Week 2: Plan and research for necessary products Week 4: Begin training data set Week 6: Design prototype Week 8: Assemble and build prototype Week 10: Have a prototype ready for debug phase

Image-to-Braille Converter

Team members: Alberto Barbosa, Stanley Chen, Harry Duong, Phillip Lai Henry Samueli School of Engineering

Mentor: Professor Sameer Singh Donald Bren School of Information and Computer Science

Figure 1: Some materials we will use: A breadboard, wires, a Raspberry Pi 3 Model B+, a Raspberry Pi Camera Module V2, and a copy of Emily Bronte's Wuthering Heights.

Approach

The device takes a live video-stream from a camera and recognizes alphanumeric characters. It feeds the characters into a neural network which predicts the correct letter or digit. It sends the prediction to the Raspberry Pi which acts on the controller and pins of a Braille display.

Progress

- Obtained parts
- Began writing
- character-recognition software
- Began testing hardware