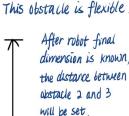
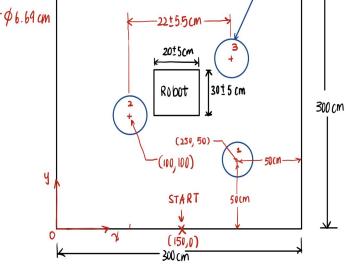


MAE 189 Capstone Design Midterm Presentation


Team 20: PathFollower



In a 2D environment with circular obstacles, construct a robot that can track a predetermined collision-free path with a maximum inaccuracy of 10%. The robot should be able to do turn maneuvers and pass through any two obstacles that are close to one another when the path follower gives the order. The robot must be self-contained, self-sufficient, and able to operate for at least 30 minutes without requiring recharging.

In a environment of **300cm x 300 cm**, our goal is to create a robot that has a base size of **20cm x 30cm** that are obstacle capable to turn and run autonomously. To ensure that the robot follows the pre-planned path within a maximum error of 10%, the obstacles are placed at distance of 22 cm apart, measured from the surface of the obstacles. The autonomous robot needs to pass through any two closely obstacles to demonstrate its precision in following the path planned.

Project Overview and Objectives:

enviroment

UCI Samueli School of Engineering -quality of robot: able to run and turn without break

-steering system and power system controlled by code

UCI Samueli

School of Engineering

- -able to run 30 minutes without recharging
- -precision to follow path with max. 10% error
- -budget \$500
- -project time: 10 weeks

Concept Design: Mechanical UCI Samueli School of Engineering

Material for the frame:

	pros	cons	why choose it
Lego	 Light and sturdy Very easy to change it's shape 	 Expensive Hard to get 	We choose lego since we want to use a light and sturdy source that is easy to work with. We consider adding some wood and plastic too to reduce the cost.
wood	- Sturdy - Easy to buy	- Heavy	
plastic	- Light and sturdy	- Hard to change it's shape or cut them.	

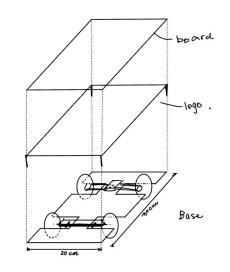
Concept design: Mechanical UCI Samueli School of Engineering

Yield strength of material

ABS plastic: 1.85*10^7 - 5.1*10^7 Pa ≈ 2700-7400 psi

Lego can resist 1000N force from hydraulic press machine

Depend on species 800,000–2,500,000 psi and 5,000–15,000 psi


Polypropylene is around 9000 psi

Even Though lego's yield strength is the lowest of all, by comparing it to other cons that lego have, and since the yield strength fall under our needed condition since all the yield strength it is going to experience is the mass of the robot, we choose lego as the main material for the frame.

Riko Takahara

	pros		cons		why choose it
Circular base	1	Can turn quicker	-	Very hard to make a circular base Round base cause in shorter distance between wheels Small area	
Rectangle base base	-	Easy to form te shape with lego Farther the wheel is going to be apart and more sturdy	-	Smaller area Need more times to turn compare to circular base	- Its the basic shape and it's easier to make. It is also more sturdy than the circular shape.

Concept design: Mechanical UCI Samueli School of Engineering

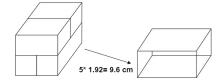
Weight Estimate For Base + Front&Rear Axis

Estimated Dimension:

Length: 32 cm

Width: 20.8 cm

Calculated Estimated Weight:


For 2 Deck + 2 Axis +Connection Only

898.8 g

3.2 cm					Bas	e				
1.6 cm	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
Dimension:	0000	0000	0000	0000	0000	0000			0000	0000
3.2*10 = 32 cm	0000	0000	0000	0000	0000	0000	0000	0000	0 0 0 0 0 0	0000
1.6*13 = 20.8 cm	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	0000	0000	0000	0000	0000	0000	0000		0000	0000
Weight:	0000	0000	0000	0000	0000	0000			0000	0000
13*10*2.32 =301.6 g	0000	0000	0000	0000	0000	0000	2.8 6 2.8 6		0000	0000
Rear Suspension: 50 g Front Steering: 60 g	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	0000	0000	0000	0000	0000	0000			000	0000
	0000	0000	0000	0000	0000	0000	0000		0000	0000
	0000	0000	0000	0000	0000	0000	0000		0000	0000
	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	0000	0000	0000	0000	0000	0000			0000	0000

Connection&2nd Base: Dimension:

3.2*1 = 3.2 cm 1.6*2 = 3.2 cm 0.96*2 = 1.92 cm

Total Weight = 2*Base + Front&Rear Axis + Connection = 2*301.6 g + 50 g+ 60 g+ 80*2.32 = 898.8 g

Concept design: Mechanical UCI Samueli School of Engineering

Comparison between Steering System

- We will choose Metal Steering System for:
 - Highest Strength to Bear Torque Given by Servo Directly
 - Acceptable Cost
 - Ackermann Steering that avoids slip

	pros	cons	why choose it
Alloy Front Steering Rod Link Pole Wheel Axle for 1/14 RC Tamiya Tractor Truck	Simple Structure Easy Access (Amazon) Solid and Stable (Alloy) Cheap (\$18)	Not Flexible in Size (7.05 x 2.68 x 1.02 inches)	Most Stable, Eco & Control Choice and at same time Most Simple One.
Lego Front Axle With Suspension Steering and Driving	Multiple Functions (Suspension mechanism fit with off-road environment) Relative Flexible Size Fit for Lego Frame Medium Cost (\$20-80)	Weak Structural Strength Not Easy to Assemble on normal base	
3D print rack and pinion steering system	Flexible in Size (Depends on need) Easy to Access (3D printer) High Potential for More Functions (Depends on Design) High Cost (Depends on yield and Crafting time. 3D print-\$8 per hour and may take more than 5 hours)	Relatively Weak Structure Strength Long Period for Replacement If Broken and High Cost Long Period for Design & Crafting	

Concept design: Mechanical UCI Samueli School of Engineering

Comparison between Suspension System

- We will choose Lego Suspension System for:
 - Convenient to Assemble with Lego Base
 - Multi-Function with Suspension System and Differential System
 - Relatively Acceptable Cost

		-	
	pros	cons	why choose it
Technic Parts Rear Suspension System for Off-Road compatible with LEGO	Easy Access (Amazon) Multiple Functions (Differential & Suspension mechanism) Adaptable for Multiple Landscapes Easy to Replace Components \$20-\$60	Weak Structural Strength (Assembly) Not Easy to Assemble on normal base (Irregular Shape) Not Flexible in size (7.5*3.3*1.53 inches)	With Differential System that Fits Power System the Most
RC Base	Finished Product Easy Access and Use Most Durable (Unibody) Completed Base, Suspension, Power, and Steering \$230-\$1000	Not Flexible in size Difficult to modificate Difficult to add more sensor and other electrical components Relatively Expensive	
Rod and Gear System	Finished Product Easy Access and Use Durable (Alloy body) Cost Efficiency (\$7) Easy to Assembly (Fixed in a hole)	Single Function and Single Power input (Without Differential) Fixed Size	

Concept Design: Electrical

UCI Samueli School of Engineering

DC Motor

- 2 different choices for power output for robot.
- Went with DC motor with 3000 rpm and 30W due to high power output
- Can adjust torque output through gear ratio.

DC Motor (3000rpm, 30W)	- High RPM and High power output	- requires gear ratio to increase torque	
ECETROVEDIALCH 水磁面近色の D: 12V r/ain: 300	- Uses 12v - Should be powerful enough for worse case scenario		
DC Motor (30rpm, 6kg*cm)	 - 30rpmspeed can be adjusted to go slower, not faster - Decent torque, 6kg*cm. Torque can be adjusted by changing gear ratio (increase in gear ratio would cause more torque but less rpm) - Current .6Amp 	- may not produce enough torque for our application - low power (.018W)	For back wheel driving https://www.amazon. com/dp/B071KFT4P7 /ref=sspa_dk_detail 0?pd_rd_i=B072R5G 5GR&pd_rd_w=YZps 1&content-Id=amzn1. sym.88097cb9-5064- 44ef-891b-abfacbc1c 44b&pf_rd_p=88097c b9-5064-44ef-891b-abfacbc1c

$$\mathcal{L} = \{17,658\} \\ \mathcal{L} = \{1,7,658\} \\ \mathcal{L} = \{1,7,7,758\} \\ \mathcal{L} = \{1,7,758\} \\ \mathcal{L} = \{1,$$

$$P = Pover(W) , T = Torque (N*m) , U = Streed (rpm)$$

$$3000 RPM, 30 W$$

$$P = \frac{(T)(W)}{ASSO} \rightarrow T = \frac{P(q.SS)}{W} = \frac{(30)(q.SS)}{3000} = .1 N \cdot m$$

$$P = Pover(W) , T = Torque (N*cm) , U = Streed (rpm)$$

$$S RPM \qquad 30 R PM$$

$$P = \frac{(T)(W)}{ASSO} = \frac{(10)(S)}{ASSO} = .005 W$$

$$P = \frac{(G)(30)}{ASSO} = .018 W$$

$$P = \frac{(3.47)(SO)}{ASSO} = .0207 W$$

$$P = \frac{(.7)(SO)}{ASSO} = .0403 W$$

Concept Design: Electrical

- We will go with 20kg servo motor as it is cheaper and is powerful enough for our applications

- Will need a 12v to 5v convertor to operate

	Servo Motors				
	pros	cons	why choose it		
20kg servor motor	- operates on low voltage 4.8-6.8 - cheap - lightweight (2.12 oz)	- needs a convertor - can't produce a force greater than 20kg, would maybe not be optimal for back wheel driving	- for front wheel steering https://www.amazon. com/ANNIMOS-Digit al-Waterproof-DS321 8MG-Control/dp/B07 6CNKQX4/ref=sr 1 8?crid=19SBFI4YU0 8RG&keywords=serv o+motors&qid=16653 64586&qu=eyJxc2Mi Oil1LjQxliwicXNhljoi NC43OSIsInFzcCl6lj QuNTkifQ%3D%3D& sprefix=servo%2Cap s%2C166&sr=8-8		
35kg servo motor	 operates on average voltage 5-7.4 lightweight (2.12 oz) Heavy amount of torque 	- a bit too powerful for our applicatoin	- for back wheel drive (depending on how heavy the overall robot will be) https://www.amazon. com/ZOSKAY-Corele ss-Digital-Stainless-a		

Convo Motoro

UCI Samueli

School of Engineering

Michael Punaro

Concept Design: Electrical

- Battery (36800 mAh = ~44 mins)

10 × Battery Capacity in amp hours / appliance load in watts

Mass of robot: 1451 g 5v servo = 5 watts 5v arduino = 0.29 watts Gps module = .024 watts DC motor = 30 watts

10 × 36.8 mAh / 2118.6 watts = 1.7 hrs robot life (102 mins)

battery				
	pros	cons	why choose it	
(10000 - 40000) mAh portable battery	-large battery supply -cheap -constant voltage	-may not be enough power -a bit bulky (300-400g)	-Battery energy capacity is flexible -would be enough to power our robot for 30 mins -least expensive -most energy efficient	
Lithium-ion	-lightweight -stable voltage -high energy density	-expensive -may need to have multiple batteries in a pack		
Lithium polymer	-super lightweight -cheap -comes in a range of Voltages (3.7V - 44.4V)	-can be dangerous if handled improperly -requires a smart charger -must be stored and maintained properly		

UCI Samueli

School of Engineering

- Voltage Converter (12v to 5v)
 - to prevent overcharging our servo motors

UCI Samueli School of Engineering

Michael Punaro

Concept Design: Electrical

Microcontroller Board				
	pros	cons	why choose it	
Arduino UNO REV3	- team is very comfortable using this product - has everything we need to complete the project	- limited amount of pins	- cheaper and doesn't require WiFi/Bluetooth applications to complete the tasks https://www.amazon. com/Arduino-A00006 6-ARDUINO-UNO-R3 /dp/8008GRTSV6/ref sr_1_3?crid=1U8AV 3JBBXS1M&keyword s=arduino&qid=1665 364347&qu=eyJxc2Mi OI2LjAvdiwicXNhijoiN S4yMCIsInFzcCl6ijUu MDlifQ%3D%3D&s= electronics&sprefix=a rduino%2Celectronic s%2C156&sr=1-3	
ARDUINO UNO WIFI REV2	- Able to connect to WiFi and bluetooth - Able to do everything that Arduino UNO REV3 can do and more!	- A lot more expensive		

- Chose the Arduino UNO REV3

UCI Samueli

School of Engineering

- Has sufficient input / output pins
- Only using one sensor so a simple and cheap microcontroller would be best

Michael Punaro

Concept Design: Position sensor

UCI Samueli School of Engineering

	Pros	Cons	Reason	
Position (GPS)	 -gives longitude+latitude -one is enough to determine position -output is easier to work with when calculates desired direction 	-output in NMEA format, needs to be decoded (use arduino library) -wait about 1 min to have stable output -transfer to x,y coordinate	Doesn't choose it: Have to violate one of the design attributes: precision or budget.	
Design attributes: maximum error of 10%				

Design attributes: maximum error of 10% Budget of \$500

	precision	price(\$)
GPS NEO-6M	5-7m Not precise	~13
RTK GNSS <u>NEO-M9N</u>	1.5m Not precise	~70
RTK GNSS ZED-F9P	1cm	~275 Too expansive

Rong Tian

Concept Design: Position sensor

UCI Samueli School of Engineering

	1	Pros	Cons	Reason
Direction	Magnetometer:	-measure heading , easy to use as direction - high precision with low price precise:1%, price:~\$8	-Large fluctuations and inaccuracy in reading near magnet -discontinuities in heading from 360 to 0.	
	Gyroscope:	 -high accuracy,(<1 degree) (frequently used with accelerometer) \$7 	-measure angular velocity -need to calculate direction from reading	-MPU 6050 (gyro+accel), ~\$6 -arduino library to output in angle with respect to initial direction
Distance	Reed switch:	-easy to install -cheap~\$3-5	- limited in a certain speed range - discrete distance measured	
Rong Tian	Encoder:	- continuous measure in distance -more accurate - accuracy in 0.3 degrees or less <\$10	-convert rotational displacement to electric signals -convert to linear displacement -avoid slippage	-gives more precise distance measurement

Schedule after week 4

week	Task	Duration	Start Date	End Date
1	Team formation and meeting	4	9/27/2022	10/1/2022
2	Team organization Report	3	10/1/2022	10/4/2022
2,3,4	Concept design	20	10/3/2022	10/23/2022
2	week 2 status report	1	10/8/2022	10/9/2022
3,4,5	Solidwork Model	21	10/9/2022	10/30/2022
3,4	Pseudocode	14	10/9/2022	10/23/2022
3,4,5	Wire diagram	21	10/9/2022	10/30/2022
3	week 3 status report	1	10/15/2022	10/16/2022
4	Purchase order	6	10/17/2022	10/23/2022
4	Webpage	3	10/20/2022	10/23/2022
4	week 4 status report	1	10/22/2022	10/23/2022
5	Midterm presentation	2	10/23/2022	10/25/2022
5	Midterm report	6	10/24/2022	10/30/2022
6	week 6 status report	6	10/31/2022	11/6/2022
6,7	Electric verification	13	10/31/2022	11/13/2022
6,7	Robot fabrication	13	10/31/2022	11/13/2022
6,7	Code first draft	13	10/31/2022	11/13/2022
7	week 7 status report	7	11/7/2022	11/13/2022
8	Robot prototype	1	11/13/2022	11/14/2022
8,9	Test robot and fix problem	13	11/14/2022	11/27/2022
8	week 8 status report	6	11/14/2022	11/20/2022
9	week 9 status report	6	11/21/2022	11/27/2022
9	Final Robot	0	11/27/2022	11/27/2022
10	Final Presentation	5	11/27/2022	12/2/2022
10	Poster and design review	5	11/27/2022	12/2/2022
10	Design review	7	12/2/2022	12/9/2022
10	Final report	7		

Tianhao Zheng

Purchase order submitted in week 5, expect to get component in week 6. Electrical and coding team will work on code before parts arrived.

Mechanical team already obtain some of the parts and works on it.(suspension+differential)

 Find an accurate way to determine position with direction and distance measured
 -curve line distance? Straight distance?

-frequency measured?