

PROBLEM DEFINITION

• Design, manufacture, and test an ergonomic, electric recumbent bike for an endurance race

RACE

- 2.5 hour relay
- 1.5km laps
- Patches of rough pavement
- 5% grade uphill, 7% grade downhill
- Cargo parcel
- Hairpin turns & Slalom sections

SAFETY

- 25km/hr to 0 within 6m
- 8m turning radius
- Brakes for each front wheel
- Rollover system with 2670N top load, 1330N side load

ELECTRICAL

- One electric motor (500W maximum rating)
- 10 Ah capacity battery
- Battery isolated from driver
- Fireproof

ORGANIZATIONAL CHART

01. STATIC SUBSYSTEM

Keep the rider safe and comfortable

Stable Can't tip over

Ergonomic Riders must be comfortable

Tubing

	Outer Diameter (in)	Wall Thickness (in)	Cost/in	Rank	Max stress (N/mm^2)	Rank	Max displacement(mm)	Rank	Max strain	Rank	Weight/in	Rank (weight	Mount-ability
	1	0.125	\$0.57	1	4.322E+07	17	1.563E-01	17	5.038E-04	17	0.405	1	17
С	1.25	0.125	\$1.38	5	2.435E+07	15	8.087E-02	15	3.099E-04	15	0.52	2	16
1	1.5	0.125	\$2.20	14	1.674E+07	13	4.913E-02	12	2.064E-04	13	0.635	4	14
R	1.75	0.125	\$2.62	16	1.289E+07	10	3.333E-02	7	1.491E-04	10	0.75	6	13
С	2	0.125	\$1.57	8	9.258E+06	5	2.435E-02	5	1.124E-04	6	0.866	8	11
U	2.5	0.125	\$1.88	11	1.337E+06	2	3.408E-03	2	1.607E-05	2	1.096	10	7
L	3	0.125	\$1.47	7	9.650E+05	1	2.422E-03	1	1.152E-05	1	1.33	13	6
A	1.5	0.25	\$1.72	9	1.105E+07	7	2.980E-02	6	1.316E-04	8	1.156	12	12
R	1.75	0.25	\$1.89	12	8.201E+06	4	1.939E-02	4	8.895E-05	4	1.39	14	10
	2	0.25	\$2.70	17	6.035E+06	3	1.373E-02	3	7.209E-05	3	1.617	16	8
S	1	0.125	\$0.79	2	3.13E+07	16	9.92E-02	16	3.11E-04	16	0.526	3	15
Q	1.25	0.125	\$1.02	3	2.07E+07	14	5.59E-02	13	2.27E-04	14	0.654	5	9
U	1.5	0.125	\$1.12	4	1.45E+07	11	3.94E-02	10	1.50E-04	11	0.809	7	5
A	1.75	0.125	\$1.76	10	1.13E+07	8	3.41E-02	8	1.35E-04	9	0.956	9	4
R	2	0.125	\$1.40	6	1.05E+07	6	3.43E-02	9	1.00E-04	5	1.102	11	3
E	2.5	0.125	\$2.03	13	1.20E+07	9	4.64E-02	11	1.24E-04	7	1.426	15	2
	3	0.125	\$2.44	15	1.45E+07	12	7.08E-02	14	1.57E-04	12	1.691	17	1

* This is a generalized chart
 Main Frame #1 Mountability → Square Tubing
 RPB #1 Weight → FEA on Square v. Circular
 Rear Forks #1 Affordability → Use rear forks from salvaged bikes

Presentor: Sophia

Tadpole

Courtesy of RAD Innovations

Courtesy of HPVC - UW Madison

- 500m or 60sec penalty if tips over
- Must exit vehicle within 15sec without assistance

OUR SEAT: VELODREAMER

Courtesy of Jetrike

Cushion
Freedom to adjust angle
Under budget (\$150)

000 ·

Presentor: Darren

+ Seat

- CAD model
- 40 degree angle

Estimated calculations of crankshaft placement

- Mounts

- Adjustable
- Forgiving angles
- Easily manufacturable

Crankshaft Placement

Original: Based off Jetrike Ratios

<u>Updated</u>: Based off our rider leg length & <u>Design of</u> <u>Human-Powered Vehicles</u> by March Archibald

Presentor: Sophia

RPS FRAME SHAPE

Rating: 1-4 (worst to best)

von Mises (N/m^2)
7.730e+06
6.957e+06
6.184e+06
. 5.411e+06
. 4.638e+06
. 3.865e+06
. 3.093e+06
. 2.320e+06
. 1.547e+06
7.742e+05
1,437e+03
→ Yield strength: 6.204e+08
von Mises (N/m^2)
2.173e+07
. 1.955e+07
_ 1.738e+07
. 1.521e+07
. 1.304e+07
. 1.087e+07
. 8.694e+06
. 6.522e+06
4.350e+06
. 2.178e+06
5.828e+03
Vield strength: 6.204e+08

equal: height, length, applied load(2670N), cross-sectional area

		Concepts								
		Triangular		Circular		Square			Hexagonal	
Selection Criteria	Weight (%)	Rating	Weight ed Score	Rating	Weight ed Score	Rating	Weight ed Score	Ra	ting	Weight ed Score
Weld-able & Prototype-a ble	50%	1	50	2	100	4	200	4		200
Rollover (minimal points of stress)	25%	1	25	4	100	2	50	3		75
Support top load (2670N)	25%	4	100	1	25	2	50	3		75
Total	100%	6	175	7	225	8	300	10		350
Continue?		No		No		No			Proceed	

Presentor: Sophia

Final Frame

Weight: ~20lbs: Height: 52.3" Length: 82.05" Width: 26"

- comfortable room for shoulders Height from back of seat: ~18"
 - comfortable room for head, helmet & anatomical proportions

Seat mount raised above the Center Frame so no interference with Drive train or E-Box.

Center of mass: (inches) X = -3.02 Y = 10.03 Z = -13.00

Frame + RPS FEA

Side Load: 1350N PASS ✔ Top Load: 2670N 15° to RPB PASS ✔ Factor of Safety ~ 2.1 Industrial Metal Supply CO., Irvine 1.25"-0.25" & 1.75" 6061 Aluminum

02. DYNAMIC SUBSYSTEM

Control and drive the bike efficiently

MAJOR COMPONENTS

Drivetrain System

Design an efficient drivetrain that can adjust gearing for uphill/downhill riding and reach 30 mph

Braking System

Create a braking system that can go from 25 km/hr to 0 km/hr within 6 m.

Steering System

Construct steering system with maximum turning radius within 8 m and drive straight for 30m at speeds of 5[~]8 km/hr

Rear 8-Speed Flywheel Cassette 11-32T 700C Wheel Hardware Chain Drive Motor and crankset on 68mm bottom brackets and shells **Intermediate Gear** Derailleurs on Bafang BBS02 500W Mid-Drive crankset and Electric Motor w/ two Chainrings cassette 30T input/38T output Presentor(s): David Lozano Gear Ratio = 1.2667

Drivetrain Review

Crank 3-Speed Crankset 42-34-24T 170mm Crank Arm

Front Wheels

20" Wheels with **Disc Brake Mounts**

FINAL Drivetrain Overview

Configuration

3-Speed Crankset on front

Intermediate gears attached to electric motor

8-Speed Cassette on rear

700C wheel on rear, 20" wheels on front

Speed @ max development and 100 RPM = 38.9 mph

Drivetrain Verification

Using Chosen Components

 $G_D = \frac{N_{chainring}}{N_{freewheel}} * \frac{N_{mid-output}}{N_{mid-input}} * D_{drive wheel} * \pi$

- 2.0-2.5m development for 5% uphill grades
- 8m> development for speed and 7% downhill grades

32 28 24 21 18 15 13 11 # of crank Development in meters teeth 24 2.0 2.3 2.8 3.2 3.7 4.3 5.1 6.0 2.9 3.3 3.9 4.4 5.2 6.2 8.5 34 7.1 3.5 4.1 4.8 5.4 6.3 7.6 8.9 42 10.4

Speed @ max development and 100 RPM = 38.9 mph

GEAR DEVELOPMENT TABLE

of cassette teeth

FINAL Drivetrain Verification

Jig to verify drivetrain mechanism and geometry

26 inch freewheel secured on mount

Motor and crankset on flat surface

Current Results

More spacing needed between intermediate

gears

Solution

Add 2mm spacers between chainrings until

interference is gone

BRAKING SYSTEM: MECHANICAL DISC BRAKES

Rating	Durability	Calipers	Rotor	(minus rotors)
4/5	5/5	BR-M375 (\$25.98)	180 mm (M) 160 mm (S)	\$41.98
		BR-TX805 (\$18.99)	180 mm (M) 160 mm (S)	\$34.99
4/5	5/5	BR-TX805 (\$66)	160 mm (S) 140 mm (SS)	\$84.99
4/5	5/5	BR-RS305 (\$65)	160 mm (S) 140 mm (SS)	\$77
	Rating 4/5 4/5 4/5	Rating 4/5 5/5 4/5 5/5 4/5 5/5	Rating Solution Calipers 4/5 5/5 BR-M375 (\$25.98) BR-TX805 (\$25.98) BR-TX805 (\$18.99) 4/5 5/5 BR-TX805 (\$66) 4/5 5/5 BR-RS305 (\$65)	Rating Calipers Rotor 4/5 5/5 BR-M375 (\$25.98) 180 mm (M) 160 mm (S) BR-TX805 (\$18.99) 180 mm (M) 160 mm (S) 4/5 5/5 BR-TX805 (\$66) 180 mm (M) 160 mm (S) 4/5 5/5 BR-TX805 (\$66) 160 mm (S) 140 mm (SS) 4/5 5/5 BR-RS305 (\$65) 160 mm (S) 140 mm (SS)

Presentor(s): Anisha Jayasekara

FINAL BRAKING SYSTEM: MECHANICAL DISC

Shimano BR-M375

Disc Brake Adapter

Terra Trike Dual Brake Lever

Shimano Brake Cable Set 160 mm Brake Rotors

Braking Force: 588.6 N Braking Force Applied: 185.4 N Braking Distance: 4.9 m

STEERING MECHANISM SELECTION

Track Rod Steering

- Less variables to control
- Cost-effective
- Stable, but potential avenues of bump steer

Six-bar Steering Mechanism

- Five variables to control
- Potential budget sink
- Greater stability and range of motion

Figure 11-5 Track rod steering parameters

Courtesy of Mark Archibald. Design of Human Powered Vehicles

Presentor(s): Daniel Jang

DIRECT VS. INDIRECT STEERING

Direct Steering

Indirect Steering

Presentor(s): Daniel Jang

Direct	Indirect
"Grounded"	"Weightless"
Similar effort as bike steering	Noticeably less effort to steer
Handlebars attached to wheels	Tie rods attached to wheels
Horizontal or vertical handlebars	Vertical handlebars

Courtesy of Laid Back Cycles

WHEEL ANGLES

Presentor(s): Daniel Jang

FINAL STEERING MECHANISM

Track Rod Steering

- Ackermann steering
- Three-linkage system connecting two front tires
- Separated handlebars for control of each tire
- Able to turn 8m without significant turning force

Turning Radius (m)	Inside Wheel Angle (degrees)	Outside Wheel Angle (degrees)		
3	27.65373425	21.74977077		
4	20.71522981	17.14054905		
5	16.48066143	14.11003001		
6	13.6557804	11.97670301		
7	11.64608878	10.3975395		
8	10.14660647	9.183131741		

Wheelbase and Track Length

- Wheel Track: 28 inches
 - Stable when moving straight
 - Linkage connections
- Wheelbase: **39 inches**
 - Optimized for rollover threshold vs. brake limit
 - For safety, prioritize brake limit

Rollover Threshold vs. Brake Deceleration Limit

Wheelbase (m)

03. ELECTRIC SUBSYSTEM

Safely power and control the bike

Electric Box

Material: ABS
3D print @ UCI, maybe
Fireproof blanket encasing (rulebook)
Weight: ~12 lbs (including battery)
Dimensions (LxWxH): ~12" by 8" by 5"
Enclosed compartment; battery will slide in and out
48V battery (verified via multimeter)
Battery → E-stop → Motor

Courtesy of polycase

Final Assembly

Total Weight = 63 Pounds (Able to be handled by 2 people ✓)

Frame Manufacturing Plans

Revise drawings for ease of cutting and welding

Specify cut angles and provide overall dimensions

Assembly Plans

Install rear wheel and steering assemblies

Install drivetrain components to test and adjust as needed

Install seat, harness, brakes and battery to test vehicle

Electrical System Breakdown

Preliminary Concerns

Bike Frame Design:

Continue FEA to determine the best tube size for the frame, apply mounts for seat & harness

Drivetrain:

Optimize mounting point for the motor to avoid interference with the seat, determine front derailleur mounting solution (braze-on or clamp)

Brakes:

Finalize the rotor selection and determine whether to use one brake lever versus two independent levers

_ Steering:

Find optimal placement of tie rods and connection points

Presentor(s): Daniel Jang, Anisha Jayasekara, David Lozano, and Sophia Shannon

Final Concerns

Bike Frame Manufacturing:

The frame may get done before April 1, 2023.

Drivetrain:

Optimizing performance from the drivetrain by installing and tuning components

Brakes:

Need to verify speed and braking required to pitch over the vehicle

Steering:

Ergonomics for extended periods of riding

Future Recommendations

- Use a material that can be manufactured on campus; reduce outsourcing as much as possible.
- Majority of the team start on the frame so it may be manufactured by end of Fall Quarter.
- Possible Innovations: rear swing arm, front suspension, fairing, and regenerative braking
- Utilize flow chart to improve workflow
- Keep better documentation of project additions and changes

Year Two Outlook

- Optimize & Manufacture Design
- Reorganize Team & Workflow Structure

THANK YOU

Questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

References

ASME Human Powered Vehicle Competition 2023 Rulebook

Design of Human Powered Vehicle by Mark Archibald

HPVC Design with Fairing 2021

<u>Jetrike</u>

<u>Polycase</u>

The University of Akron Human Powered Vehicle Competition Team Report

UWM HPVC Project