

Background

To bring convenience, accuracy, and modern-style to the tuning process for amateur and professional guitarists. The **handheld automatic tuner** will be designed to work in very noisy environments.

Project Goal/ Device Functionality

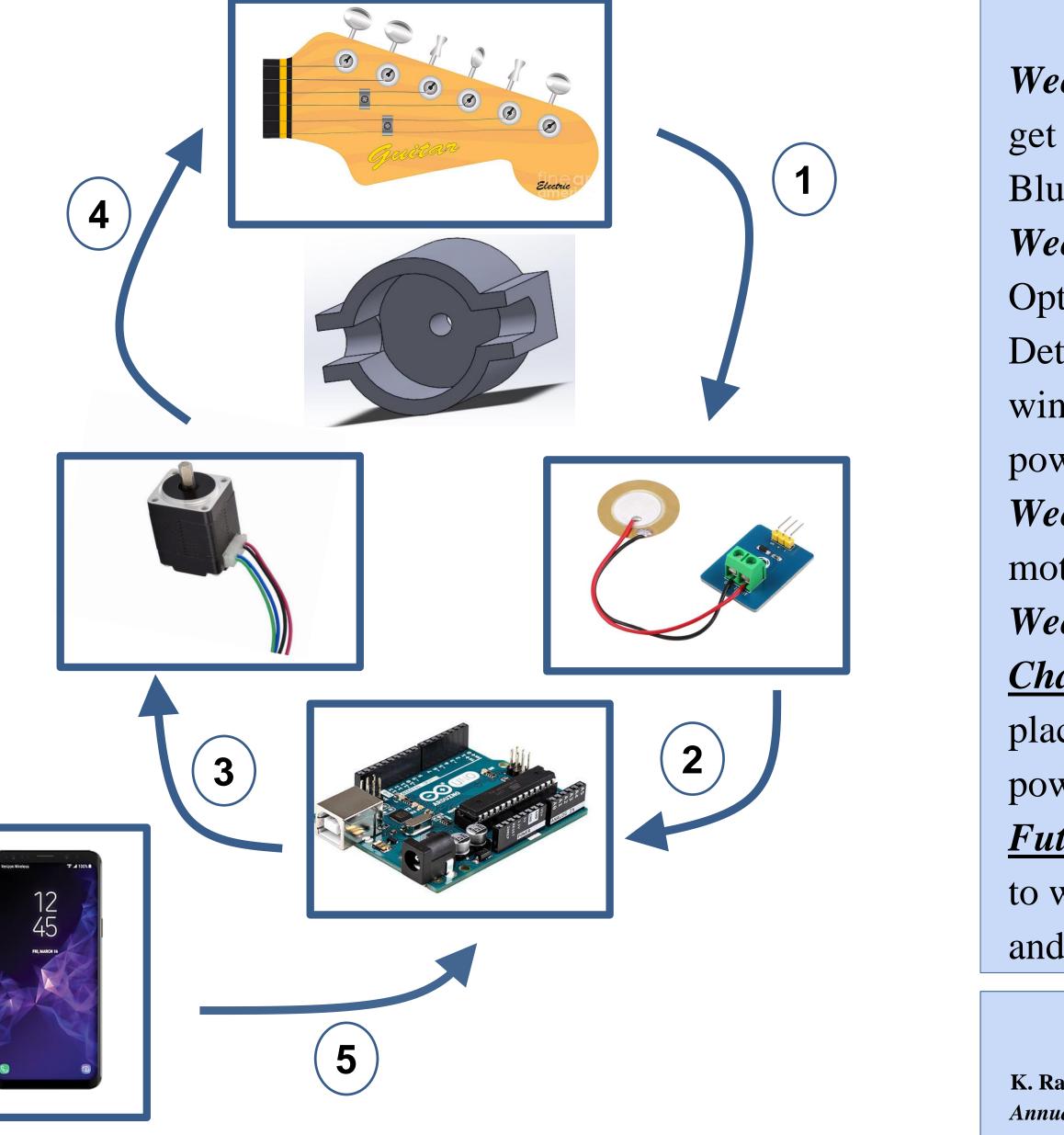
Create a handheld automatic guitar tuner that works in noisy environments with great accuracy. Designed for the following method of operation:

- . Hold device on the tuning peg of a string.
- Pluck that string.
- . The device will use signal processing techniques to filter noise from the desired string vibration frequency.
- . Device will automatically turn a stepper motor, which winds the string's tuning peg, so that the string plays the correct frequency.

Tasks

Victor Darakjian (EE) - Signal Processing (filtering noise, frequency finding), Leading (Testing, Planning, Delegating)

Adalberto Sicairos (EE) - Hardware Implementation (sensor/motor organization and upkeep, chassis, 3D) printing)


Dexter Gianto Suherman (CSE) - Microcontroller programming (sensor, motor, microcontroller)

Ha Young An (CSE) - App development

Handheld Automatic Guitar Tuner

Victor Darakjian, Dexter Gianto Suherman, Adalberto Sicairos, Ha Young An Professor A. Lee Swindlehurst

Department of Electrical Engineering and Computer Science

Components and (Conduits)

There are **5** interfaces:

- 1. Guitar-Sensor (String-winder bit)
- 2. Sensor-Microcontroller (Amplifier, Low-Pass filter)
- 3. Microcontroller-Motor (Motor Power module)
- 4. Motor-Guitar (String-winder bit)
- 5. Android App-Microcontroller (Bluetooth module)

Team GnG! (Gadgets n Gizmos)

Milestones

Week 1-3: Find an optimal sensor placement location to get reliable data. Begin creating the app and establishing Bluetooth connectivity. Learn control of stepper motor. *Week 4-7:* Reliably determine guitar string frequency. Optimize string-winding bit to transmit vibrations well. Determine a reliable ratio of frequency difference to winding rotation. Finish adding features to app. Solidify power distribution.

Week 8-9: Make the app pretty. Fine-tune any motor/sensor/algorithm features.

Week 10: Last minute checks and fixes.

<u>Challenges</u>: Figuring out an optimal vibration sensor placement for more reliable readings. Figuring out the power specs of a battery.

Future Work: Find an appropriate frequency difference to winding rotation ratio. Finish the app. 3D print chassis and solidify power distribution.

References

K. Rahnamai, B. Cox and K. Gorman, "Fuzzy Automatic Guitar Tuner," NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society, San Diego, CA, 2007, pp. 195-199.

doi: 10.1109/NAFIPS.2007.383836

R. Keim, "How to Design Charge Amplifiers for Piezoelectric Sensors," All About Circuits, 23-Oct-2018. [Online]. Available: https://www.allaboutcircuits.com/technical-articles/how-todesign-charge-amplifiers-piezoelectric-sensors/. [Accessed: 14-Oct-2019].

Heckbert, P. (2019). Fourier Transforms and the Fast Fourier Transform (FFT) Algorithm. [online] Cs.cmu.edu. Available at:

http://www.cs.cmu.edu/afs/andrew/scs/cs/15463/2001/pub/www/notes/fourier/fourier.pdf [Accessed 14 Nov. 2019].

S. Hokin, "The Guitar", 2019. [Online]. Available: http://www.bsharp.org/physics/guitar. [Accessed: 08-Nov.-2019].

THE HENRY SAMUELI SCHOOL OF ENGINEERING UNIVERSITY of CALIFORNIA - IRVINE