

### **Project Overview**

The purpose of the project is to design a lift station in the city of Hesperia to accommodate a new local neighborhood's wastewater demand. This includes the design of a gravity pipe, lift station, pumps, odor control system, and force main that leads to the regional wastewater treatment plant.

### **Design Criteria**

| Wastewater Demand by Phase                        |              |                     |  |
|---------------------------------------------------|--------------|---------------------|--|
| Phase 1                                           | Average Flow | 1.0 MGD             |  |
|                                                   | Peak Flow    | 1.5 MGD             |  |
| Phase 2                                           | Average Flow | 2.0 MGD             |  |
|                                                   | Peak Flow    | 3.0 MGD             |  |
| Design Summary                                    |              |                     |  |
| Gravity Pipe Selection                            |              | 24" PVC Pipe        |  |
| Wet Well Selection (H x W x L)                    |              | 15.9' x 8' x 10'    |  |
| Force Main Size                                   |              | 8" PVC Pipe         |  |
| Type of Pump                                      |              | 4xD 4"              |  |
| Number of Pumps                                   |              | 2 (1 in Redundancy) |  |
| Pump Power                                        |              | 25.54 hp            |  |
| Client Data                                       |              |                     |  |
| Hydrogen Sulfide Concentration [H <sub>2</sub> S] |              | 30 ppm              |  |
| Gravity Pipe Length to Wet Well                   |              | 1000 ft             |  |





# LIFT STATION DESIGN

## Hesperia, California

Project Manager: Dominique Quintanilla Team Members: Meng Li, Brenda Chow, Mona Bitar

Site Plan



FRESNO STERRT

#### **Process Flow Diagram**





University of California, Irvine



## **Alternative Analysis**

| Odor Control          |                                                                                                                           |                                                                                                                                                             |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Methods               | Advantages                                                                                                                | Disadvantages                                                                                                                                               |  |
| Bio-filters           | <ul> <li>High Efficiency</li> <li>No harmful by-product</li> <li>Cost effective</li> <li>Cost of filter is low</li> </ul> | <ul> <li>Large area for treatment<br/>required</li> <li>Not suitable for all kinds of<br/>organisms</li> </ul>                                              |  |
| Carbon<br>Absorber    | ♦No chemicals ♦No Biology                                                                                                 | <ul> <li>Short service life</li> <li>Needs a large amount of<br/>time and AC</li> <li>Poor working environment</li> </ul>                                   |  |
| Chemical<br>Scrubbers | <ul> <li>Versatile</li> <li>Applicable to all kinds<br/>of situations</li> </ul>                                          | <ul> <li>Chemical cost and delivery</li> <li>Maintenance is relatively         <ul> <li>high and undesirable</li> <li>Chemical smell</li> </ul> </li> </ul> |  |

**Bio-filter is the recommended alternative.** 

#### Schedule

#### Action Items in Progress

- Mechanical Plans
- Civil Plans
- Outline of Final Progress Report
- Probable Cost Estimate
- Construction Schedule

#### Action Items Completed

- Gravity Pipe Calculations
- Sizing and Quantity of Pumps
- Process Flow Diagram
- Wet Well Design
- Alternative Analysis
- Wet Well Sizing
- Sizing of Force Main

#### Acknowledgement

The Henry Samueli School of Engineering, Civil Engineering Department and Pure Vision Engineering would like to acknowledge HDR, Professor Stephen Bucknam, Professor Joel Lanning, and Professor Kristen Davis.