

Team 9 - Thrust Chamber Design and Cooling

Sponsor: Prof. Mark Walter Team Members: Nareg Anika Francisco Yuchen Rigoberto

Problem Definition

- Tasked with providing a preliminary design of a thrust chamber capable of producing 2000 pounds of thrust at a specific impulse of 278 seconds and a chamber pressure of 500 psi.
- Must have a cooling system that can replace the ablative cooling used currently
- Design an injector that will replace the current showerhead design.
- Thrust chamber should be able to fit inside current rocket housing.
- Each component must be well-document with justification to the design choices

Objectives

- Conceptualize and design an injector that can thoroughly mix the fuel and oxidizer to ensure stable combustion while also being relatively simple to manufacture.
- Determine combustion chamber dimensions to achieve given chamber pressure and guarantee complete combustion of the propellants.
- Calculate nozzle geometries to achieve the given thrust and exit pressure.
- Design a cooling system that is capable of keeping the combustion chamber and nozzle within safe operating temperatures.
- Select materials for each component that are capable of handling the high pressures and temperatures while also remaining lightweight and cost-effective.

Injector

- Purpose: mix the fuel and oxidizer to provide a stable combustion
- Requirements:
 - Compatible to handle LOX and LCH4
 - LOX and LCH4 flow rate of between 5 to 5.3 and 1.85 to 2 lbm/s
 - Incorporate cooling system design
 - Withstand a temperature of 1200 F and pressure of 500 psi
 - Resultant spray in axial direction

Injector

- Selection:
 - Impinging element unlike-doublet
- Parameters:
 - Impingement angle: 60°
 - Immediate spray angle: 9°
 - Orifice diameters:
 - LOX: 0.069 in.
 - LCH4: 0.052 in.
 - Film cooling: 0.039 in.
 - Injector face diameter: 4 in.
- Material:
 - Inconel 718

Combustion Chamber

- Purpose: Provide adequate volume for complete combustion and direct flow to the nozzle with minimal pressure losses.
- Requirements:
 - Maintain a chamber pressure of 500 psi during combustion.
 - Maintain structural integrity for temperatures up to 1200 Rankine (5460 Fahrenheit) with cooling.
 - Remain as lightweight as possible to minimize engine mass.
 - Material should be resistant to thermal shock and corrosion.

Combustion Chamber

Material Selection

- Inconel 718, a nickel based super alloy, was selected.
- Yield stress at 1200 Fahrenheit: 142-152 ksi
- Good corrosion and thermal shock resistance
- Relatively lightweight: .296 pound per cubic inch
- Good thermal conductivity
- Relevant dimensions
 - Wall thickness: .063 inches
 - Chamber volume: 70 cubic inches
 - Chamber diameter: 4 inches
 - Chamber cylindrical length: 4.53 inches (down from ~13 inches of current Rocket Project engine due to improved injector design)

Front cross section view of combustion chamber and converging nozzle with cooling jacket

Nozzle

Needs	Requirements
Small Size	Hold Temperature up to ~5600 R
Low Cost & Great Performance on Material	Weight under 0.5 lb
Feasible Design with other parts	Wall Thickness around 0.06 in
Easy Machinability and Fabrication	Withstand 500 Psi of Pressure

Concerns:

Nozzle type: Conical Nozzle

• Fit with the small rocket engine but moderate efficiency

Nozzle material: Pyrolytic Graphite

- Great overall properties but one nozzle per launch (may alter the flow geometry)
- Relatively poor erosion resistance

Nozzle

Parameters:

Properties of Pyrolytic Graphite:

- Withstand temperature over 5000 F
- Low density of 0.079±0.001 lb/in^3
- Good durability, wear resistance, and strength
- Good thermal conductivity and thermal expansion

Four section views of the nozzle (front, left, top, and trimetric)

- Wall thickness: 0.063 in
- Nozzle length: 6.52 in
- Contour Angle: 15 degree

- Throat diameter: 1.82 in
- Exit diameter: 4.61 in

Cooling System

Heat transfer is important in rocket design:

- The thrust chamber must be cooled in order to withstand imposed loads and stresses
- Requires a lot progress from other design components

General idea of steady-state cooling methods

- Extreme temperatures of 5900 Rankine in thrust chamber
- A liquid is meant to absorb the heat being created before being expelled from the rocket

FIGURE 8-12. Typical stresses in a thrust chamber inner wall.

Cooling System Design: LFFC + Regenerative

- thin film of fuel in combustion chamber wall: thermal barrier between combustion gases and the combustion chamber
- Hot gas wall cooling by flowing coolant through copper liners
- Previous designs: Thor, Jupiter, Atlas, H-1, J-2
- Pros:lightweight, efficient, good for long durations, good for larger engine
- Cons: degrades engine performance

Combustion Chamber Cooling Jacket

Cooling Jacket made of 2 parts

- Stainless Steel 501
 - Thermal Cond. 32.45 W/m*K
 - 8 coolant channels
 - 8 holes to allow coolant flow in/out
 - 0.5" thick

- Thermal Cond. 323.64 W/m*K
- Solid with no channels
- Meant for Heat Transfer
- 0.25" thick

Liquid Fuel Film Cooling: a CFD Analysis

• In the realm of film cooling, the majority of research efforts are directed towards gas turbine engines.

Goal: remove ~3500 Rankine of heat

$$k\frac{\partial T}{\partial y}$$
)fluid + q"rad = $(k\frac{\partial T}{\partial y})$ solid

- A conjugate heat transfer problem occurs: heat flux from the film (fluid) to the wall (solid) is of main interest.
- At this fluid/solid interface the heat flux conducted by the fluid must balance out with the heat flux conducted by the solid and any radiation (if not neglected) as shown:

Remaining Questions and Recommendations

Questions:

• Is additive manufacturing possible for some of these components? (i.e. combustion chamber, nozzle, injector and/or solid steel cooling jacket)

Recommendations:

- Figuring out what type of tubing, flexible or rigid, will be used to transport coolant from tanks to cooling jacket and from cooling jacket to injector.
- Determine flange attachment points to connect the combustion chamber to the nozzle.
- Continued study on heat distributions for cooling jacket