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Introduction

Thermal Vacuum and Control of Spacecraft VED's



Background | Capstone Project

❑ Background
▪ Spacecraft Thermal Management System (STMS) is senior design project tasked to design and 

assemble a variable emissivity device/surface (VED) as a prototype to design a thermal radiator for 

deep space mission i.e. no environmental thermal flux data is available. VED will self-regulate. It is an 

interdisciplinary project with students from MAE, Chem Engr and Mat Sci Depts., and Physical 

Sciences Dept.

❑ Capstone Project - Objectives
▪ Focused on designing a thermal vacuum chamber to allow:

o Thermal conduction and thermal radiation generation, detection, and testing capabilities within moderate to 

high-vacuum regime

▪ Design a thermal control system capable of:
o Thermal flux detection and data extraction under both standard atmosphere and moderate to high-vacuum 

conditions

o Will integrate thermal control system into the chamber to perform validation testing for:

• Electrophoretic Display (EPD)

• Smart Window Technology

• NiO/WO3 thin-films, connected via gel-electrolyte → “electrochromic cell”.
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Vacuum Chamber Design
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Thermal Vacuum Chamber Design:

Thermal Vacuum and Control of Spacecraft VED's

❑ Objectives
■Design and manufacture a thermal vacuum chamber that accurately simulates the thermal and flow physics of 

Low Earth Orbit (LEO), for the purpose of testing Variable Emissivity Devices (VEDs).

Fig. 1 Finalized CAD of the Thermal Vacuum System
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■ Thermal Vacuum Chamber Requirements:

1. Simulate the Solar radiation of LEO 

(~1366 W/m2).

2. Reach and withstand high vacuum level 

(10-3 – 10-9 Torr).

3. Enable thermal conductivity tests for 

VED’s

■ Chamber dimensions:

5.5"x7" & 0.25" wall thickness.



Thermal Vacuum Chamber Design:

Thermal Vacuum and Control of Spacecraft VED's

❑ Design Process
o Chamber material is 304 Stainless Steel, to minimize outgassing.

o Equipped with a NAVAC vacuum pump, rated at 12 CFM and reaches 5 microns.

o Consulted Pfeiffer Vacuum on the current design, and they provided design recommendations regarding 

overall system conductance.

o Chamber is fully manufactured and will be used for VED testing.

Fig. 2 Chamber Lid (pre-manufacturing) 

and Vacuum Fittings
Fig. 4 Fully Assembled Thermal 

Vacuum Chamber
Fig. 3 NAVAC NP12DM
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Thermal Vacuum "at home" Testing
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Fig.5 Chamber Evacuation Trial, Captured on Arduino 

Pressure Transducer

❑ Vacuum Chamber Performance Testing

o Pressure [hPa] in proportion to time [s] (Fig.5)

o Performed vacuum pump and full systems vacuum performance

testing on the current design

o Achieved 5 microns ultimate vacuum pump pressure

o Achieved 1.4 hPa pump pressure and 8 hPa chamber pressure    

(medium-vacuum regime)



Thermal Vacuum "at home" Testing

Thermal Vacuum and Control of Spacecraft VED's

❑ Vacuum System Leakage Testing 

(Pump-down Test)

o Pump-down test: due to outgassing, the chamber 

evacuation time should decrease after each trial if 

not leakages are present.

o Test results detected a leakage in the vacuum 

system, likely in the pressure transducer 

connection.

o The leakage test will be repeated once a vacuum-

compatible gauge is obtained.
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Fig. 6 Plot of overlayed synchronized evacuation trials, showing 

chamber pressure v.s. time



Solar Emittance Device (SED)
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SolidWorks CAD model, v1
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SolidWorks CAD model, v1
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Fig. 7 Sample holder and bolts are made of 304 stainless steel to 

simulate the internal materials of the CubeSat

❑ This is the first model that shows the SED 

on the right, viewport in the middle, and 

sample holder inside the chamber on the left
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ANSYS Simulation
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❑ In this preliminary simulation, we see a 

radiation probe on the sample holder with a 

net negative radiation flux. This demonstrates 

that the light from the SED is getting into the 

chamber.
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Fig. 8 SED Activation within the Vacuum Chamber

Preliminary Design



Redesign of CAD
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❑ After collaborating with Lance from STMS (studying 

SEDs), I was recommended to enclose the SED in 

order to direct light into the viewport.
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SolidWorks CAD model, v2
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❑ SED holder with enclosure
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Electrophoretic Display (EPD)
and Smart Window Technology
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EPD Aesthetics: The Electrophoretic Display (EPD)

Fig. 9 Electrophoretic Display (EPD), Panel Side

Fig. 10 Electrophoretic Display (EPD), Back Side

▪ Thermal Sensors will are to be placed on surface and 

back-side of module during thermal conductivity 

tests
o Working Temperature (@ STP): 0o C - 50o C

▪ EPD Dimensions:
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Smart Window Technology: Behavior

Fig. 11 Smart Window Technology (Opaque State-Off) Fig. 12 Smart Window Technology (Transparent State-On)
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Heat Transfer Analysis
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❑ Diagram depicting preliminary EPD thermal conductivity test design set-up
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EPD Thermal Conductivity Test: Conceptual Design
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❑ Model of EPD - thermal conductivity test under vacuum
• Thermal Resistance Network of Model (right)

• Cu and Al conductivities – depend on 

manufacturer 

• Requires heat flux sensors (for 𝑞1)

• Requires K-type thermocouples

• Steady-state temperature of baseplate must

be achieved

• Steady-state temperature of heating pad

is required

• Assuming all areas, 𝐴, and all thicknesses

𝐿 are equal.
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𝒌𝑬𝑷𝑫 =
𝑞1𝐿𝑘𝐶𝑢𝑘𝐴𝑙

𝐴 𝑇1 − 𝑇5 𝑘𝐶𝑢𝑘𝐴𝑙 − 𝑞1𝐿 𝑘𝐴𝑙 + 𝑘𝐶𝑢

Heat Transfer Model: EPD - Thermal Resistance Network 

Fig. 13 EPD Thermal Conductivity Model (left); Thermal Resistance Network (right)



Conceptual Design: Thermal Conductivity Test
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Fig. 14 TC Control Lab

❑ Testing Visualization
■ From bottom to top (Fig. 10)

• Heat Exchanger (heat sink)

• EPD placed on copper bolts

• Aluminim plate

• TC Control Lab (heat source, 65 oC)
• MatLab/Simulink

• Aerogel used as insluation
• Will be purchased

• Machine Al-plate and Cu-plate;

o Purchase and machine with 

area [3.036 in2] equal to 

EPD

Fig. 15 Conceptual Design – Thermal Conductivity Tests
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TC-Control Lab: Demonstrating Temperature Control (MATLAB)



EPD - Reflectance and Transmissivity
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EPD Reflectivity Preparations
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Fig. 16 EPD Switching Between Extreme Black 

(left) and White States (right)

❑ Arduino IDE
■ EPD “Flash Point” Code (Figure )

o Enables alternation between extreme black and 

extreme white states

❑ Controls Panel

Fig. 17 ESP32 Development Board Dimensions
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Reflectance Testing
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Fig. 18 Alina Testing Mirror Reflectivity

❑ Mirror Reflectivity
■ ~100% Reflectance

o Nearly zero transmissivity

o 400 nm – 750 nm wavelength

❑ EPD Reflectivity
■ Ranged between 11% - 16%

o 16 % upper limit
• Extreme white state: 16%

o 11 % upper limit
• Extreme black state: 11%

Fig. 19 Reflection [%] in Proportion to Wavelength [nm]
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Capstone Project Timeline

Thermal Vacuum and Control of Spacecraft VED's

❑ Deadlines - Completed
■ On track for each deadline

❑ Future Deadlines
■ Authorization to ET-303 lab is needed
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