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Background | Capstone Project

0 Background
=  Spacecraft Thermal Management System (STMS) is senior design project tasked to design and
assemble a variable emissivity device/surface (VED) as a prototype to design a thermal radiator for
deep space mission i.e. no environmental thermal flux data is available. VED will self-regulate. It is an

interdisciplinary project with students from MAE, Chem Engr and Mat Sci Depts., and Physical
Sciences Dept.

0 Capstone Project - Objectives

. Focused on designing a thermal vacuum chamber to allow:
o Thermal conduction and thermal radiation generation, detection, and testing capabilities within moderate to
high-vacuum regime
. Design a thermal control system capable of:
o Thermal flux detection and data extraction under both standard atmosphere and moderate to high-vacuum
conditions
o Will integrate thermal control system into the chamber to perform validation testing for:

. Electrophoretic Display (EPD)
. Smart Window Technology
. NiO/WOj, thin-films, connected via gel-electrolyte — “electrochromic cell”.
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Thermal Vacuum Chamber Design:

O Objectives

= Design and manufacture a thermal vacuum chamber that accurately simulates the thermal and flow physics of
Low Earth Orbit (LEO), for the purpose of testing Variable Emissivity Devices (VEDs).

4-micron

»  Thermal Vacuum Chamber Requirements: PM filter

Roughing Line to

1. Simulate the Solar radiation of LEO Dual-Stage, Yi’ﬁzﬁe‘tﬁe
. Rotary Vane Humidity)
(N 1366 W/m ) Pump, 7056- >

& Borosilicate

2. Reach and withstand high vacuum level o
= Viewport

(10°=10"*Torr).
3. Enable thermal conductivity tests for
VED’s D

\

s Chamber dimensions: 8-Pin Electrical
5.5"x7" & 0.25" wall thickness. Feedchrough

Fig. 1 Finalized CAD of the Thermal Vacuum System
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Thermal Vacuum Chamber Design:

O Design Process

O  Chamber material is 304 Stainless Steel, to minimize outgassing.

o0  Equipped with a NAVAC vacuum pump, rated at 12 CFM and reaches 5 microns.

O  Consulted Pfeiffer Vacuum on the current design, and they provided design recommendations regarding
overall system conductance.

©)

Chamber is fully manufactured and will be used for VED testing.

Fig. 2 Chamber Lid (pre-manufacturing)

Fig. 3 NAVAC NP12DM Fig. 4 Fully Assembled Thermal
and Vacuum Fittings

Vacuum Chamber
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Thermal Vacuum "at home'' Testing

0 Vacuum Chamber Performance Testing

O  Pressure [hPa] in proportion to time [s] (Fig.5)

O  Performed vacuum pump and full systems vacuum performance
testing on the current design

O  Achieved 5 microns ultimate vacuum pump pressure

O  Achieved 1.4 hPa pump pressure and 8 hPa chamber pressure
(medium-vacuum regime)

Fig.5 Chamber Evacuation Trial, Captured on Arduino
Pressure Transducer
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Thermal Vacuum "at home'' Testing

Q Vacuum System Leakage Testing
(Pump-down Test)  ° S

O  Pump-down test: due to outgassing, the chamber
evacuation time should decrease after each trial if
not leakages are present.

Pressure (microns)
w » o

O  Test results detected a leakage in the vacuum
system, likely in the pressure transducer
connection.

—

O  The leakage test will be repeated once a vacuum-
compatible gauge is obtained.

0 1 1 1
[] 2 4 6 8 10
Time (sec)

Fig. 6 Plot of overlayed synchronized evacuation trials, showing
chamber pressure v.s. time
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SolidWorks CAD model, v1

O This is the first model that shows the SED
on the right, viewport in the middle, and
sample holder inside the chamber on the left

Fig. 7 Sample holder and bolts are made of 304 stainless steel to
simulate the internal materials of the CubeSat
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ANSYS Simulation

2

Q In this preliminary simulation, we see a
radiation probe on the sample holder with a
net negative radiation flux. This demonstrates
that the light from the SED is getting into the
chamber.
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Fig. 8 SED Activation within the Vacuum Chamber
Preliminary Design
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Redesign of CAD

O After collaborating with Lance from STMS (studying
SEDs), I was recommended to enclose the SED in
order to direct light into the viewport.
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SolidWorks CAD model, v2

O SED holder with enclosure
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Electrophoretic Display (EPD)
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EPD Aesthetics: The Electrophoretic Display

= Thermal Sensors will are to be placed on surtace and
back-side of module during thermal conductivity
tests
o Working Temperature (@ STP): 0° C- 50° C
= EPD Dimensions:

Thermal Vacuum and Control of Spacecraft VED's
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(EPD)

Fig. 10 Electrophoretic Display (EPD), Back Side
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Smart Window Technology: Behavior

Fig. 11 Smart Window Technology (Opaque State-Off) Fig. 12 Smart Window Technology (Transparent State-On)
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EPD Thermal Conductivity Test: Conceptual Design

O Diagram depicting preliminary EPD thermal conductivity test design set-up

HEATING PAD (63 Celsius)

CONDUCTIVE SOLID
(assume Copper)

ELECTROPHORETIC DISPLAY (EPD - assume semi-conductive material)

STANDARD AIR (ideal)

CONDUCTIVE SOLID
(assumie Aluminum)

THERMAL VACUUM CHAMBER BASEPLATE
(304 Stainless Steel)

Thermal Vacuum and Control of Spacecraft VED's Brandon Grajeda 17
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Heat Transfer Model: EPD - Thermal Resistance Network

0 Model of EPD - thermal conductivity test under vacuum
* Thermal Resistance Network of Model (right)

g
* Cu and Al conductivities — depend on l ’
manufacturer
* Requires heat fluzx sensors (for qq) T
. L
* Requires K-type thermocouples A
*  Steady-state temperature of baseplate must T

CONDUCTIVE SOLID

be aChieVed (assume ) L

*  Steady-state temperature of heating pad T kA
1s required
e Assuming all areas, A, and all thicknesses e 1]|—A =0
L are equal. ! K
Ly
Kppp = q1Lkcyky ] A
A(Ty = Ts)keyka — q1L(kg + key) ’

Fig. 13 EPD Thermal Conductivity Model (left); Thermal Resistance Network (right)

Thermal Vacuum and Control of Spacecraft VED's Brandon Grajeda 18
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Conceptual Design: Thermal Conductivity Test

Q0 Testing Visualization

= From bottom to top (Fig. 10)

*  Heat Exchanger (heat sink)

*  EPD placed on copper bolts

*  Aluminim plate

* TC Control Lab (heat source, 65 °C)
*  MatLab/Simulink

* Aerogel used as insluation
*  Will be purchased

*  Machine Al-plate and Cu-plate;
O  Purchase and machine with

area [ 3.036 in?] equal to
EPD EPD on Cu Bolts

Heat Source

Al - Plate

Heat Exchanger

Fig. 15 Conceptual Design — Thermal Conductivity Tests
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EPD - Reflectance and Transmissivity
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EPD Reflectivity Preparations

Q0 Arduino IDE
= EPD “Flash Point” Code (Figure )

O  Enables alternation between extreme black and
extreme white states

O Controls Panel

Fig. 16 EPD Switching Between Extreme Black
(left) and White States (right)
MPLRS Pressure
Transducer

ESP32-to-EPD
Connection

Fig. 17 ESP32 Development Board Dimensions

Thermal Vacuum and Control of Spacecraft VED's Brandon Grajeda 22



Reflectance Testing

O Mirror Reflectivity
= ~100% Reftlectance
o Nearly zero transmissivity
© 400 nm — 750 nm wavelength

O EPD Reflectivity

= Ranged between 11% - 16%

o 16 % upper limit

* Extreme white state: 16%
o 11 % upper limit

*  Extreme black state: 11%

Thermal Vacuum and Control of Spacecraft VED's
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Fig. 19 Reflection [%] in Proportion to Wavelength [nm]
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Capstone Project Timeline
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THIN-FILM TESTING (ATM.)

—a4um§-
asmfg—

THERMAL YACUUM CHAMBER

FixrRA%%
ﬂ o NoEm oW oD

PROJECTS SHOWCASE PRESENTATION
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FINAL REFORT & POSTER DUE

O Deadlines - Completed
On track for each deadline

0 Future Deadlines
Authorization to ET-303 lab is needed
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