Advisor: Professor Perry Johnson Members: Daniel Arenas, Amanda Fujimoto, Margallo Malit, Carter Murphy

Summary

- XFoil is a program made by MIT to predict the lift and drag forces on airfoils for low Reynolds numbers flow conditions and for low angles of attack
- AntFoil's goal is to verify and validate the usefulness and accuracy of XFoil
- Validation of XFoil would mean that it could be used to quickly and reliably produce results that reflect real flow conditions
- Verification will be confirmed through a comparison to the forces experienced by a flat plate which is solved using the Blasius solution
- Validation will be performed by comparing XFoil to the data gathered in the UCI wind tunnel using a physical airfoil model

Designing our Experiments

Verification

- Use a flat plate to verify XFoil
- Blasius solution gave the results for drag at a given Reynolds number
- XFoil not able to compute a zero thickness geometry, used an approximation with a decreasing thickness ellipse
- Found a value for drag that XFoil converged to for a decreasing thickness ellipse for each Reynolds number

Validation

- Used the NACA 0021 airfoil and the Clark y-14 airfoil in the UCI wind tunnel to gather data
- Data was collected at Re = 64500 (15mph) and Re= 130863 (30mph)
- Compared wind tunnel data to XFoil data that was gathered at the same Reynolds numbers
- Comparison between the lift and drag coefficients, varying the angle of attack

Coefficient of

Perce

Avera Perce

Team AntFoil Validation of XFoil for 2D Airfoils

	NACA 0012	NACA 2412	NACA 4412	NACA 6412
mum ber	0%	2%	4%	6%
mum ent Error	146.7%	125.7%	72.6%	15.5%
age ent Error	43.8%	21.7%	40.5%	10.7%

Chord: 150 mm Disc Diameter: 200mm -

Results and Conclusion

- From our data, we can not conclude that XFoil is able to verified with our flat plate analysis
 - XFoil still converged to a solution for most tests
 - Possibly due to an error in the values input into the Blasius solution
- Based on the comparison between collected wind tunnel data and predictions from XFOIL analysis, we concluded that we cannot validate the XFOIL software
 - percent errors ranged from 40% to 170%, which is much higher than our 10% error margin

ecommendations and Improvements

- Collect data from online sources with a similar range of Reynolds numbers for comparison
- Test an airfoil with camber to see if there if a difference in accuracy
- Calibrate the wind tunnel load cell to 0 lift at 0 angle of attack for proper measurements
- Attach streamers to the airfoil for a visual identifier of fluid dynamics

References and Acknowledgments

We'd like to thank the following people for the input and supervision that enabled to complete our planned experimentation

- Dipan Deb (<u>dipand@uci.edu</u>)
- Cody Gonzalez (<u>codyg2@uci.edu</u>)