Overview

- This project aims to use radio frequency identification (RFID) technology to devise an all-weather asset detection and localization method for objects that may be hidden from obstacles in an unknown environment.
- The main robot is equipped with an RFID antenna and scans through the environment to locate a target that is pre-equipped with a passive RFID tag.
- Several reference robots equipped with passive RFID tags aid the main robot in navigating the environment.

Existing Solutions

- VICON Motion Capture System:
- Advantage: Accuracy (Usually in millimeter scale)
- Disadvantage: Expensive (Requires many infrared cameras).
- Optical Camera and Machine Vision Algorithm:
- Advantage: Adaptation to new environment.
- Disadvantage: Requires prior training to recognize objects.

Maximize RFID Detection Range

- Key Designs:
- Higher dBi: more coverage in the $x-y$ direction.
- Matching Network: RFID tag impedance is matched to chip impedance to minimize power loss (at 915 MHz)

Figure 1: Circuit of a L-section matching tuning network Inductor $1=2.327 \mathrm{e}-9 \mathrm{H}$ Inductor $2=3.9 \mathrm{e}-8 \mathrm{H}$ Resistor $=50 \Omega$

Figure 2: Power Delivered to Load:
No Matching Network vs. Double Tuning
At 915 MHz , there is no power
(dB) loss by matching the chip to RFID tag impedance

Figure 3: Radiation Pattern of RFID tag at 915 MHz
Ultra-high frequency (UHF) RFID tag at 915 MHz has good coverage in the transmitting direction.

Figure 4: Effect of Radar Cross Section on read distance Results: 16.8 m detection range

Design Solution

Figure 6: Target detection and localization using the mean angle

Figure 7: Robot sweeping path via

- Requirements
- Scan area: 40×40 meters
- Antenna's detection range and field of view: 10 m and 30°, respectively.
Time allotted to detect and locate target: 5 minutes
- Methodology
- Robot follows a sweeping ("lawn mower") path via waypoints
- Upon detection, the robot uses the rotating directional antenna to determine the two angles/directions that the target is within (see Fig. 5).
- The robot moves along the mean angle/direction of the two angles found until it gets closer to the target.
- The method of finding a mean angle and moving along that angle is repeated because a random error is added to the mean angle in order to simulate the imperfections of an antenna's field of view.

Future Improvements

- Implement an obstacle avoidance algorithm into the current one.
- Develop a more efficient algorithm that determines the path that the robot follows
- The sweeping ("lawn mower") path method ensures the whole area is scanned, but there is some wasted time/energy because the robot will most likely rescan previously scanned areas (see Fig. 7).

Impact on Society

- RFID-based asset detection and localization can applied to search and rescue missions.
- The ability for RFID to work through obstacles allows it to work phenomenally in harsh environments such as areas with a plethora of debris caused by a fire or dense forests.

Safety Consideration

- Research on the adverse health effects from electromagnetic waves emitting from an RFID antenna is inconclusive.
- Interference RFID technology can be life threatening if it is used within proximity of interference-sensitive medical devices such as pacemakers and implantable cardioverter defibrillators (ICDs) [1].

Acknowledgements
Special thanks to Professor Solmaz Kia for your guidance and mentorship.

[^0]
[^0]: References
 [1]"Radio Frequency Identification RFID", U.S. Food and Drug Administration, 2018. [Online]. Available:

