

Time To Wind Down

Team members: David Luong, Yushi Zhang, Christian Lensang, and Minsu Kim

Sponsored by Mahmoud Abdelgalil

MAE 189 : Small Scale Wind Turbine Academic Year : Winter 2023

Overview

Design a small-scale prototype wind turbine that outputs a minimum power of 10 watts irrespective of the wind direction and be compatible with a common power bank.

Challenges

- Must withstand wind speeds up to 18 m/s
- Must generate more than 10W between
 5m/s and 11m/s wind speed
- Must fit within 50cm³ cube
- Must have a total weight <10 lbs
- Must have a total cost < \$300

Existing solution

Company: BEVOGIE
Price: \$53.99
Size: 42*22*9cm

Weight: 1.54lbs

Rated Power: 30W

Vertical-Axis Wind Turbine SolidWorks Design

Final Design: Key Dimensions

Rotor radius(R): 20cm Chord length(c): 24cm Blade length(s): 30cm

Angle of attack(**Q**): 8 degree

Final Design : Materials

Aluminum: Rod

¼ inch Wood : Blades, Arm,

Disk

Analysis: Thin & Symmetric Airfoil [1]

 $L = c_L \pi asc \rho_{\infty} V_{\infty}^2$ L = Lift force(N)

 $c_{L} = 2\pi\alpha$ $c_{L} = \lim_{n \to \infty} c_{n} = \lim_{n \to$

F_L = Lsin(a) T = NF_IR

 $P = T\omega$

 ω = Angular velocity (rpm)

P = Power (W)

 ρ_{∞} = Density of air (kg/m³)

 V_{∞} = Wind speed (m/s)

Analysis: Wind Turbine Power [2]

 $P = \frac{1}{2} c_{p} \rho_{\infty} A V_{\infty}^{3}$ A = 2* s*c

 $c_p = c_T^* c_M$

c_p= Overall power efficiency (%)

A = Swept area (m²)

 $c_T = Turbine efficiency (%)$ $c_M = Motor efficiency (%)$

F₁ = Tangential lift (N)

T = Torque (N*m)

 α_{F_t}

Performance

At $V_{\infty} = 9 \text{ m/s}$

L = 87.3 N $P_{W} = 53.6 \text{W}$

T = 2.19 N*m $C_{T} = 26.6\%$

 $\omega = 112 \text{ rpm}$ $C_{M} = 90\%$

P = 12.9 W $C_D = 23.9\%$

Impact on Society

- Clean and renewable source of energy
- Promotes keeping the environment healthy
- Reduces dependence on fossil fuels
- Energy self-sufficient

Team Contribution

Minsu Kim: Electrical Lead
David Luong: Electrical Team
Yushi Zhang: Mechanical Lead

Christian Lensang: Mechanical Team

Future Recommendations

- 1. HAWT
 - a. higher efficiency
- 2. Lighter material
 - a. allows turbine to rotate easier
 - b. more convenient to transport

Acknowledgment

Our team would like to thank our sponsor, Mahmoud Abdelgalil, for offering helpful advice, encouraging hard work, and honesty.

Reference

[1] Anderson, John D., and Chris Cadou. *Fundamentals of Aerodynamics*. McGraw Hill LLC, 2024.

[2] Castillo Tudela, Javier. "Small-Scale Vertical Axis Wind Turbine Design." Pàgina Inicial De UPCommons, Universitat Politècnica De Catalunya, 2 Oct. 2013, https://upcommons.upc.edu/handle/2099.1/19136.