

## **Project Background**

- Spacecraft operate in a temperature range larger than the ranges found on Earth and must efficiently absorb/reject heat.
- For smaller satellites, mechanical hardware may prove too uneconomical and unreliable for use in space.
- A solution for a space shield is to use a variable electrochromic radiator to absorb and reject different amounts of heat.
- Similar to 787 windows, an electrical current is passed through slides and will emissivity changes almost instantaneously.
- Light Color (Sun): Reflect:
- Dark Color (Dark): Reflect: , Emissivity:

## Goals

Design, manufacture, and test a low cost, variable electrochromic thin film prototype by Summer 2019 for use on Cube, Nano and other budget satellites.

## **Objectives**

**Cost:** <\$125 per sq. inch **Operating Conditions:** < 10E-5 Pa Weight: ~1.25kg per sq. meter **Emissivity:** Variable from  $\varepsilon = 0.2 - 0.8$ Max Power: 3 VDC **Thermal Barrier:** 332-379K

### Timeline



Figure 2: Proof Of Concept SolidWorks Model



Figure 6: Nickel (dark) and Tungsten (white) slides

Fall

- Design Proof of Concep
- Finish Coding and Calib Potentiostat
- Begin Making Films thr Bath Deposition
- **Begin Redox Reaction T** Chemical Films
- Implement Spectrometer

**Contact Info:** Dr. Khalid Rafique (krafique@uci.edu)

# **Spacecraft Thermal Management 2018 - 2019**

Team Leads & Subleads: Trevor Morgan, William Jo, Bryan Nguyen, Thoai Tran, Kristen Wong, Pedro Hernandez, Michael Chung Advisers: Dr. Khalid Rafique, Dr. John LaRue, Dr. Daniel Knight, Allen Kine



Figure 1: Schematic Of Variable Electrochromic Device Prototype



Figure 2: Proof Of Concept Assembly Experiment



Figure 3: Lense Holder for **Spectrometer Testing Station** 



Figure 4: Testing Stand with Nickel and Platinum Electrode





Figures 7 (Left) & 8 (Right): Nickel Slides Colored (Left) and Tungsten Slide Colored (Right)



Figures 8: Slides before annealing

|                               | > | Winter                                    |   | Spring                                                       |
|-------------------------------|---|-------------------------------------------|---|--------------------------------------------------------------|
| ot Prototype<br>ration of the | • | Manufacture Proof of Concept<br>Prototype | • | Test Proof of Concept Protot<br>Continue to Synthesize and F |
|                               | • | Continue Making Films through CBD         |   | Procedures for Chemical Filn                                 |
| ough Chemical                 | • | Continue Spectrometer Testing             | ٠ | Continue Spectrometer Test                                   |
|                               | • | Continue Redox Reaction Testing of        | • | Continue Redox Reaction Te                                   |
| Testing of                    |   | Films                                     |   | Films                                                        |
|                               | • | Begin Redesign of Vacuum Chamber          | • | Test New Redesign of Vacuu                                   |
| er to Testing                 | • | Implement synthesis and annealing filr    | m |                                                              |
|                               |   | processes                                 |   |                                                              |

#### Trevor Morgan (tamorgan@uci.edu)





# Mechanical

### **Team Budget**





ting

esting of

ım Chamber

### This Year's Team



### **Team Organization**



### **Spacecraft Thermal Management 2018 - 2019**