Eric Friestedt, Hamza Hanif, Hassan Elquosey, Nicholas Nielsen, XueJun Hong, Zaid Khan Underwater Remotely Operated Vehicle Sponsored by Dr. Sherif Hassaan

A.R.C.H.E.L.O.N.

Executive Summary

Coastal areas in California attract millions of tourists a year and the more crowded these areas become, the more they are prone to pollution and trash build up. There are a few solutions when it comes to debris collection from bodies of water. We propose an underwater remotely operated vehicle (ROV) capable of maneuvering and object retrieval. Our ROV is nicknamed Archelon and it features applications of modern technology derived from underwater ROV research

HOW WILL THE ROV FLOAT?

Fundamental Buoyancy Equation:
$B=\rho \times V \times g$
B: Buoyant Force
ρ : Density ($1000 \mathrm{~kg} / \mathrm{m}^{3}$)
V: Volume of Water Displaced
g: Force of gravity ($9.8 \mathrm{~m} / \mathrm{s}$)

Societal Benefits \& Impacts

- Raise awareness of the technical applications of robotic technology and its marine applications
- Demonstrate the effectiveness of underwater study through exploration and mapping and object recognition and retrieval

UCISamueli
School of Engineering
University of California, Irvine

OUR TEAM

- Eric Friestedt

Team Lead / Software

- Hassan Elquosey

Assistant Team Lead / Structural

- Zaid Khan

Team Outreach / Electrical

- Xuejun Hong

Task Organization / Ballast

- Hamza Hanif

Secretary / Mechanics

- Nicholas Nielsen

Treasurer / Propulsion

Equation for thrust:
$T=\rho \times n^{2} \times D^{4} \times C_{T}$

- T: Thrust (N)
- ρ : Fluid density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
- n : Propeller rotational speed (RPM)
- D : Propeller diameter (m).
- C_{T} : Thrust coefficient.

Future Improvements

- Better materials and thrusters that did not fit the current budget
- Scalable model subsystem prototypes
- Easily scalable design for commercial use

References:

- MATE ROV Competition
- Seaperch

