Bottle Lift and Transfer Project

Quan Nguyen, Allen Luo, Brion Song, David Shin, George Huang **Sponsor: Mohamed Shorbagy**

Executive Summary: The main objective of this lab is 1) To transfer a 16 oz water bottle from the table) to Point B(Platform), and 2) make sure our final design is timely, inexpensive, repeatable, and autonomous. To complete these objectives and meet our requirements, our design incorporates mechanisms that produce motion in the vertical and horizontal directions. To identify a suitable mechanism, functional requirements and trade studies were conducted for each mechanism. The mechanisms that are needed in order to complete the project are horizontal and vertical motion actuation, which is done through a rack and pinion gear for horizontal motion and a pulley system for the vertical motion. A claw-carriage system is used in order to grip the bottle and transfer it on the platform. IR sensor are used to detect the platform, which has the IR light and magnet.

Einal Docigne

Design	Process:		
	Subsystem	Form	F
	Vertical Lift	1) Aluminium Extrusion 2) Vertical Actuator/Pulley	1) Hold C Vertica 2) Power Actuato
	Carriage	 Carriage Platform Claw Railing Horizontal Extrusion 	1) Hold C 2) Grip Bo 3) Hold C 4) Extend with H
	Electronics	 Hall-Effect Sensor IR Sensor Time of Flight Distance Sensor Battery Servo Motors 	1) Detect 2) Detect 3) Recogn Using 4) Power

Figure 1: Subsystem Component Breakdown and Funct

Society Impacts:

• Finding an autonomous way that improves a menial improve efficiency in a manufacturing/ packaging p

Future Recommendations:

- Find material with imperial unit for easier assembly
- Less budget constraints may enable linear actuator movement

Acknowledgements:

David Copp, Mark Walter, Mohammed Shorbagy

Function	 Delrin V-Wheels are attached to slid allowing movement along aluminun extrusions
Vertical Motion Power Vertical Motion Using Actuator/Pulley	 L-brackets screw in from the base w mechanism stable from toppling Vortical Movement from Extrusion:
Hold Claw and Railing in Place Grip Bottle with Claw Hold Claw in Place with Railing Extends Claw to Platform with Horizontal Extrusion	 Horizontal Movement From Extrusion.
Detect Magnet with Hall-Effect Detect LED light with IR Recognize Height of Carriage Using Time of Flight Power Motors Using Battery	
tion Identification	Safety Consideration: closed claw system
al, repeatable task to	von Mises (N/mm^2 (M 4.970e+00 4.473e+00 3.976e+00
y and purchasing	. 3.479e+00 2.982e+00 2.485e+00 1.988e+00
for more accurate	1.491e+00 9.940e-01 4.970e-01 0.000e+00
	Figure 5: Static Simulation of 10 N being applied to the c due to weight of water bottle: stress below yielding

MAE 151A Project

UCI Samueli School of Engineering

ched to slider carriage g aluminum

the base will keep

Extrusion: 13 inches om Extrusion: 6 in

Figure 2: Final Design CAD of mechanism Figure 3: Wiring Diagram of Mechanism **Electronics**

claw system to avoid touching of gears and moving servo

applied to the claw

Figure 6: 3D printed part of claw assembly: claw, gears, and base on the left, lid on the right