

RADBLOCK

The Radio that Avoids Advertisements

Tristian Guinto Kaylx Jang
Brian Truong Brian Dizon

Professor Brian Demsky

Software Designed for Ambiguity

Modifiable Parameters:

- Quantity of Ad and Music samples
- Length and Quantity of sub-samples
- Sample Rate and Bit rate
- Dimensions of Spectrogram
- Tensor Model Configuration

Techniques / Details:

- 2 Layer Convolutional Neural Network using TensorFlow
- 44100 samples/sec

Results of First Test

Spectrogram	1 sample each	1 sample each second
Loss	0.3991	0.1381
Accuracy	99.5	98.32
Raw audio		
Loss	0.0702	0.1473
Accuracy	99.66	97.2

Analysis:

- Spectrogram vs Raw Audio & Number of sub-samples do not meaningfully affect accuracy
- The ads dissimilar to music were very easy to detect.

Hardware Antenna & SDR

Software Defined Radio (SDR)

- Multiple radio channels via software rather than using hardware filters
- Allows direct Radio Frequency, Bandwidth, Spectrogram, Sample Rate, and Bit Rate inputs

Results

- Connected Rasberry Pi to FM radio
- More advanced outputs and detail via CubicSDR software

Timeline

Training Sets Found and Research
TensorFlow ID Ads w/ Training Data

Rasberry Pi Hardware Setup

Connect to multiple stations to dynamically switch in real time

Identify more types of music & ads on other stations

Connect to car AUX via TEA5767

Automatically detect and tag stations

Mobile Andriod/iOS App

Challenges

- Reading mutiple channels at once
- X Properly ID ads with majority music
- X Account for non-music radio (talking)

