

University of California - Irvine

Solar Airplane 2020-2021

Background

Solar Airplane aims to create a UAV that utilizes solar cells to extend flight time. A modular payload bay will be incorporated so the aircraft may be used in multiple different use-cases, such as search-and-rescue, payload drop delivery, and surveillance of a large area.

Goals & Objectives

- To provide students an understanding of integrated systems, airplane design, prototyping and manufacturing
- Aim to increase the flight time of our UAV by integrating solar panels and minimizing mechanical losses
- This quarter's objectives were to research the components of a UAV, create a design utilizing Solidworks, run stress analysis on components, and create models on electrical components

Current Status

- 50% of components shipped
- revision of characterization of aircraft using Excel

Components selected

Aircraft Specifications

Anciait Specifications	
Current Weight	6.3 lbs.
Payload Capacity	0.5 lbs.
Wingspan	10 ft 5 in
Wing Loading	9.7 oz/ft^2
Stall Speed	12.3 mph
Total Length	6 ft.
Power Consumption	50 watts
Power Generation	117 watts
Solar Cells:	Sunpower C60

Wiring Diagram

Laptop running

Projected Timeline

Winter

Research, design, of electrical and aero components. Stress analysis of the structures.

Fall

Component verification, weight reductions, and design modifications.

analysis.

Fabrication/ manufacturing, flight testing, performance

Spring

Requirements

- Multipurpose aircraft
- Must be able to fly in 20 mph winds
- Solar cells supplement battery power
- Minimum of 30 minutes extension beyond the battery-alone duration
- GPS and camera integration
- Aircraft should be portable and fit within a small car (max. component length 6ft)
- In-flight data received via remote terminal

Next Steps

- Continue with characterization of MPPT, battery charging cycles, & development of most efficient flight plan
- Begin fabrication of wings, fuselage, and tail parts. Concurrently build jig for assembly of all parts.

For further inquiry, contact:

Andre Necochea **Project Manager:** Tyler Ong Wing Lead: **Alexander Tobey Fuselage Lead: Gabriel Nicklaus** Tail Lead: **Avionics Lead:**

Preston Sterling

anecoche@uci.edu ongtd@uci.edu atobey@uci.edu gnicklau@uci.edu pbsterli@uci.edu