UCI Cargo Plane - Structural Optimization

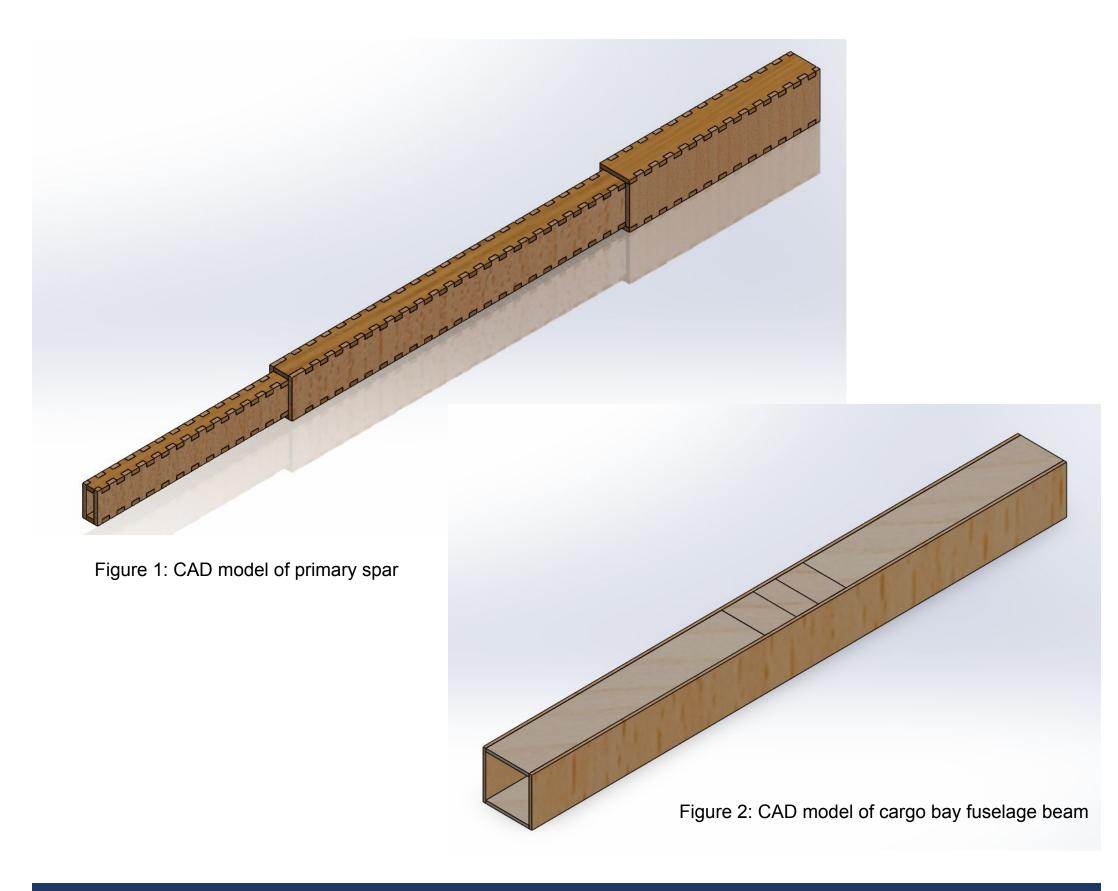
Chris Park, Nathan Lang

Sponsor: Professor Larue
Acknowledgements: Professor Walter, Professor Rimoli, Sam Stout

Executive Summary

UCI Cargo Plane is a senior design project aiming to develop a lightweight RC aircraft capable of taking off, maneuvering, and landing with the heaviest payload possible to compete in the International SAE Aero Design competition. Our MAE151 project acts as an auxiliary unit to the team by providing additional analysis of the two major load-bearing structures in the aircraft: the cargo bay fuselage beam and the primary spar structures for next year's aircraft. Our goal is to provide mathematically driven design of the cargo bay fuselage beam and the primary spar through hand calculations, FEA analysis and static testing.

Dimensions


Table 1: Dimensions of Cargo Bay Fuselage Beam and Primary Spar

	Primary Spar					
Cargo Bay Fuselage Bea	Section 1 (inboard)	Section 2	Section 3 (outboard)			
Length (in)	46.5	29	48	30		
Spar Cap Width (in)	3.75	1.33	1.08	0.83		
Shear Web Height (in)	4.1	3.42	2.67	2.05		
Shear web Thickness (in)		1/8	1/8	1/8		
Top Spar Cap Thickness (in)	0.25	0.375	0.25	0.25		
Bottom Spar Cap Thickness (in)		0.375	0.375	0.25		

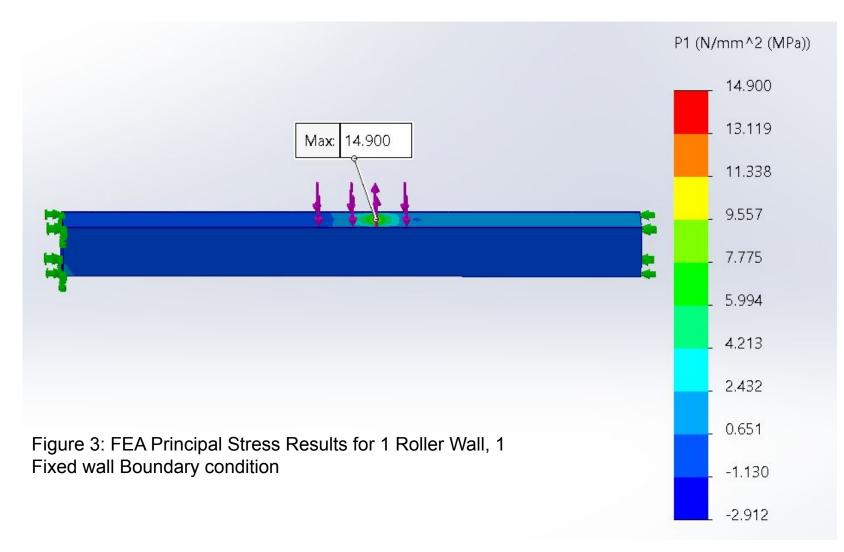
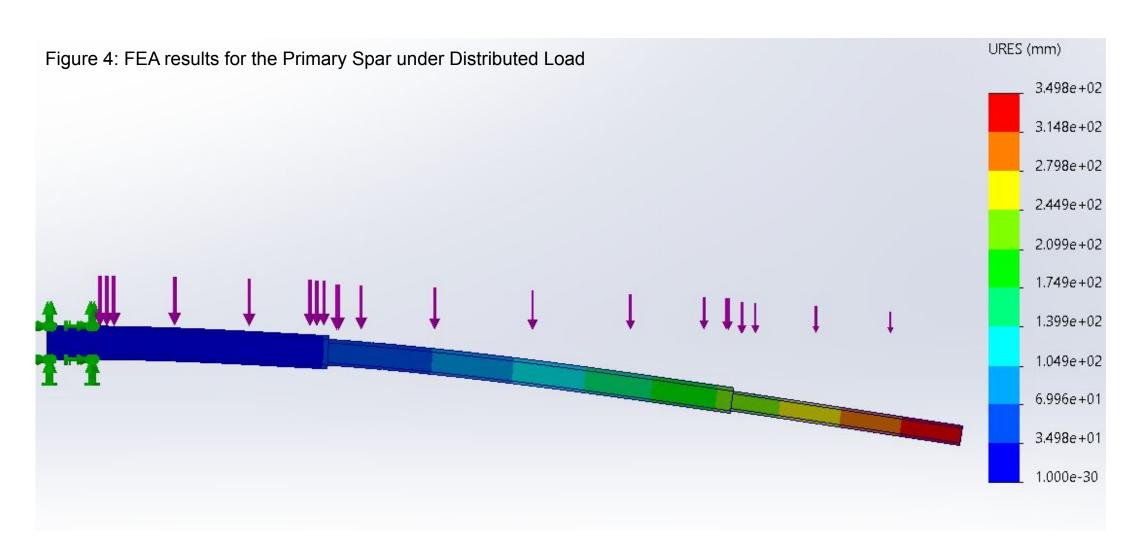

Material Research

Table 2: Material Research for Common Aircraft Woods and Aluminum Alloys

		27	Wood					Aluminum			
Properties		Balsa	Sitka Spruce	Douglas Fir	Basswood	Birch	Ash	6063-T6	6063-T4	6061-T6	6061-T4
Density (kg/m^3)		160	400	500	320	550	550	2700	2700	2700	2700
Young's Modulus E (MPa)	Longitudinal	3400	11880	13860	7200	13900	12000	68900	68900	68900	68900
	Tangential	51	510.84	693	390	740	1391				
	Radial	156.4	926.64	942.48	673	1403	1908				
Shear Modulus G (MPa)	G_LR	183.6	760.32	887.04	403.2	1028.6	1308	25800	25800	25800	25800
	G_LT	125.8	724.68	1081.08	331.2	945.2	924				
	G_RT	17	35.64	97.02	Х	236.3	X				
Ultimate Tanaila Strangth F. tu (MDa)	Longitudinal	73.0	38.6	49.0	41.0	56.0	51	172	241	310.3	241
Ultimate Tensile Strength F_tu (MPa)	Tangential	1.00	1.59	6.00	1.9	3.0	4.1				
Ultimate Shear Strength (MPa)		1.10	5.38	6.34	4.1	7.7	9.3	110	152	207	165
	μ_LR	0.229	0.372	0.292	0.364	0.426	0.371	0.33	0.33	0.33	0.33
	μ_LT	0.488	0.467	0.449	0.406	0.451	0.44				
Poisson's Ratio μ_stressdirection,straindirection	μ_RT	0.665	0.435	0.39	0.912	0.697	0.684				
	μ_TR	0.231	0.245	0.374	0.346	0.426	0.36				
	µ_RL	0.018	0.04	0.036	0.034	0.043	0.059				
	μ_TL	0.009	0.025	0.029	0.022	0.024	0.051				
Minimum Thickness (inch)		1/64	1/32	1/16	1/16	1/8	3/4	1/16	1/8	0.035	0.032


Cargo Bay Fuselage FEA Analysis

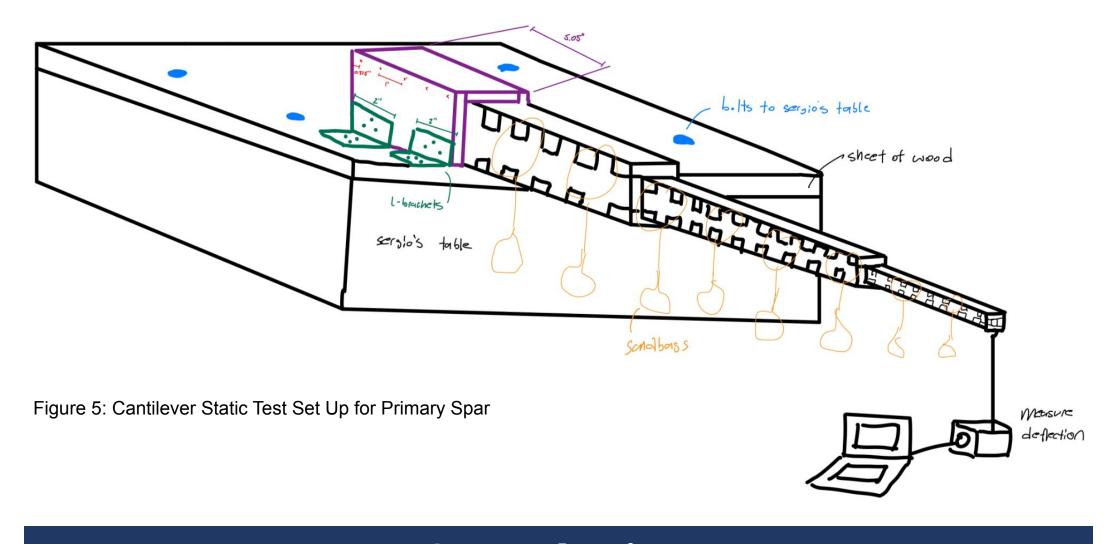

Boundary Conditions	F_tu Spruce (MPa)	Max Principal Stress (MPa)	< F_tu of Spruce Caps? Max Displ. (in)		Location of Max Displacement
2 Fixed Walls	38.6	14.729	YES	0.013	Around lift force
1 Fixed Wall, 1 Roller Wall	38.6	14.589	YES	0.030	Shear web of most aft section
1 Roller Wall, 1 Fixed Wall	38.6	14.900	YES	0.040	Shear web of most forward section

Table 3: Principal Stress Results for Boundary Conditions on Cargo Bay Fuselage Beam In Flight

Primary Spar FEA Analysis

Primary Spar Static Testing

Conclusion

Based on our analysis, the structures will withstand the appropriate loading. In addition, considerations about shipping times for specialized aircraft woods should be made earlier into the project. Lastly, for the most accurate analysis, an entire wing should be manufactured and tested to truly validate the structures selection.