CO2 Ejection System

Owen Osborne, Stella Van Note, Michael Pace, Michael Kwan, Darin Sie, Chester Amkhamavong

Sponsor: Professor Shi

Problem Definition: Ejection System

• Recovery phase

- During apogee (highest altitude reached by rocket), an ejection system is needed to eject the parachute out of the nose cone for safe recovery
- Traditional method: Black powder
 - black powder is ignited at apogee to create the pressure force needed to eject the nose cone
 - Issues
 - potential damage to parachute
 - ignition/pressurization trouble at high altitudes >20,000ft
- Solution/Objective: CO2 system
 - Instead of black powder, use CO2 cartridges as the pressurizing agent

Design attributes table

Attribute	0	С	F	Μ
Should be compatible with current preliminary test rocket	x			
Should not use black powder as pressurizing agent	x			
Components should be commercially available or easily manufactured	x			
Should be inexpensive	x			
Should be lightweight	x			
Should be easy to assemble	x			
Should create enough pressure to eject the nose cone and parachute			x	
Will use current flight computer available in rocket lab		x		
Will mount to existing rocket hardware/bulkheads		x		
Can be made out of some type of metal like aluminum				х

O: objectives C: constraints F: functions M: means Constraint details

- Flight computer applies 5 volts to apogee terminal at apogee
- 11.41" diameter bulkhead

Bulkhead

3

Flight computer

Darin Sie

Requirements

- Will fall within the \$800 budget
- Will weigh less than 3 lbs
- Will require 3 people or less to assemble
- Will pressurize cabin to a gage pressure of 30000 Pa using 1-2 25g CO2 cartridges (largest we could find on Amazon)
- Will fit within a 11.41" diameter and 18" height cylinder

System breakdown and mount location

- Flight computer detects apogee
- Flight computer sends current to actuation method
- Actuation method triggers CO2 release mechanism

Flight computer and entire CO2 ejection system would be mounted directly onto bulkhead using brackets and screws

5

Component considerations

Actuation

- Black powder (BP) charges with e-match
- Solenoid
- Servomotor

CO2 release mechanism

- Puncture (pin)
- Pre-puncture (valve-release)

-threaded COZ contridae

Valve-release

*6 total system design combinations are evaluated as a whole rather than on a component basis to ensure system cohesiveness and functionality

Pin

Design 1: Owen Osborne

- Pin puncture system (BP Charge+Pin)
 - Putty (clay) keeps black powder and ematch in place, acts as a cap
 - Flight computer ignites ematch at apogee
 - e-match ignites black powder
 - Black powder applies sufficient pressure to the puncture pin and punctures CO2 cartridge
 - CO2 cartridge pressure presses puncture pin into o-ring seal, and the gas escapes through the vent to the recovery section
 - 5.54" L x 1.5" W x 1.5" D
 - V = 12.47in^3
 - \circ W ~ 0.7 lbs (Solidworks est.)
 - Cost ~ body = \$17.62, pin = \$15.20, plug = \$12.10, o-ring = \$3.26/100, spring = \$7.26/6
 - Total = \$55.44 (doesn't include co2 or parts we already have)

Design 2: Chester Amkhamavong

Flight Computer

Pyro-Valve (BP Charge+Valve)

- Use a sealant that contains CO2 until E-matches are ignited
 - Sealant could possibly be alter the BP for thicker consistency (coarse vs fine)
 - A spring cap would shoot down when BP ignited which releases CO2
- CO2 will be pre-punctured
 - No necessary tools or equipment to be added to release CO2
- Potential Leaks are high due to pre-puncture
- Using FC to read altitude from Pressure
- Weight: ~0.97 lbs (via Solidworks)
- Cost: Spring (\$12.32), Body (~\$25), Cap (\$5.25), FC (\$80), Battery (\$2.50)
 - Total: ~ \$125.07 (not accounted for testing with BP, CO2, and E-matches)
- Size: 6" L x 6" W x 2" D

Design 3: Stella Van Note

Pin Puncture System (Solenoid+Pin)

- Spring prevents vibrations from puncturing the CO2 canister prematurely
- Barometer detects Apogee, arduino actuates solenoid at apogee
- Solenoid pushes pin to puncture CO2 cartridge
- CO2 Cartridge punctures and the release goes to recovery for ejection
- Force output
 - 195 ozf or 54.21 N
- 7.0" L x 1.5" W x 1.5" D
 - V = 15.75 in^3
- Weight

0

- ~2.5 pounds + 24 pound battery
- Cost
 - Solenoid = \$84.80; Body = \$17.62; Pin = \$15.20; <u>Battery</u> = 188.99
 - Total = \$306.61 (doesn't include co2 or parts we already have)

Design 4: Michael Pace

CO2 solenoid+valve release

- CO2 is tapped and line is pressurized up until solenoid
- Computer sends open signal at apogee
- Ramp up circuit boosts the 5V signal from the computer to the required voltage
- Solenoid opens and release pressurized co2 into the nosecone
- Flow Rate (Cv) = .04
- Size: 5.5" L x 3.5" H x 1" W
 - Volume: ~19 in^3
- Weight: 1.03 lb
- Cost:
 - Solenoid = \$200, adapter = \$20
 - Step up circuit (5V to 24V) = \$37
 - Total = \$254

Design 5: Darin Sie

- Screw system (<u>servomotor</u>+pin)
 - Flight computer detects apogee, sends trigger signal to Arduino
 - Arduino provides 5V to run desired program on servomotor (quickly turn to achieve depth of 0.1 inches and then return to original position)
 - At 5V, this particular servomotor has a stall torque of 29 kg*cm
 - Pin glued to screw punctures CO2 and CO2 is released through the outlet
 - Cost: ~\$101
 - Weight: ~1.166 lb
 - Size: 7.5" L x 4.28" W x 1.5" H
 - ~48.15in³

Design 6: Michael Kwan

- Screw System (<u>servo motor</u>+valve)
 - CO2 cartridge is already punctured and is sealed in chamber
 - Chamber is sealed by locked servo holding screw in front of release valve
 - Flight computer detects apogee and sends 5V signal to Arduino
 - Arduino runs program to have servo rotate screw past release valve (0.1in)
 - CO2 is released out of valve into nose cone
 - Cost: ~\$106
 - Weight: ~2.06 lbs
 - Size: 8.49" L x 2.5" W x 2.5" H
 - ~53.0625in³

Design Matrix (weighted rank-order)

		1 (BP	2 (BP	3	4	5	6
Design	Scaling	Charge+Pin)	Charge+Valve)	(Solenoid+Pin)	(Solenoid+Valve)	(Servomotor+Pin)	(Servomotor+Valve)
Cost	0.1	4	3	1	2	6	5
Weight	0.25	6	5	1	4	3	2
Integrability	0.15	6	4	5	2	3	1
Simplicity	0.1	6	2	5	3	4	1
Manufacturability	0.05	4	1	6	2	5	3
Durability	0.05	2	1	6	5	4	3
Reliability	0.3	6	5	3	4	1	2
Total Score	1	5.5	3.95	3.1	3.35	2.95	2.15

• Cost: Estimated cost and difficulty in obtaining (manufacturing and COTS parts)

- Weight: Estimated weight of all parts
- Integrability: Size and orientation on bulkhead
- Simplicity: # of parts and build complexity
- Manufacturability: How easy to manufacture
- Durability: Estimated use repeatability
- Reliability: Consistency

SWOT Analysis (Selected design: Design 1)

Strengths	Weaknesses	Opportunities	Threats
 Uses a lot of available/existing parts. Not a lot of things to manufacture or purchase Lots of online documentation on similar systems for reference 	 Still uses black powder, which is relatively difficult to produce or obtain in California 	• With new additive manufacturing technology and few parts, this product, assuming functionality, has the potential to be rapidly iterated and produced for commercial use in hobby rocketry	 Traditional black powder systems are still a high choice for rockets Already CO2 ejection system kits for smaller scale rockets which could affect market competition

Plan moving forward

- Week 6: Finalize design, create bill of materials, submit purchase orders
- Week 7: Assemble prototype
- Week 8: Verification and testing (requirements compliance table)
- Week 9: Minor improvements/adjustments to design
- Week 10: Finish final report

Questions/Concerns

Key items to be machined: chamber = 6061 AI, pin = 316 SS

- Is it better/easier to machine ourselves or request at UCI's machine shop?
- If at machine shop, need timeline and cost estimate
 - Protolabs?
- Guidance on appropriate tolerances