

# **Midterm Presentation**

### **The Last Airbenders** MAE 189: Project 13

Tom Lee, Elaine Wong, Adam Zorko, Shuhao Zhang, Shiming Xu

### **Mission Statement**

- Homes in remote areas need a clean, reliable backup source of electricity in case of a power outage
- Available wind turbines on the market are difficult to install and perform maintenance without professional help

### Overview

This project aims to design and plan the manufacturing of a small-scale wind turbine for farms and remote homes, designed for a single family's emergency use.

Shiming Xu

## Objectives

- Produce enough power to run appliances needed in emergency situations
- Needs to be able to be set up by at most 2 people
- Needs to be durable (withstand high wind speeds)
  - Safety systems to prevent any hazards
- Should be easy to assemble and repair
- Needs to be affordable







### Design Attributes & Requirements

| Design Attribute Table:                                                           |   |   |   |   | Re       |
|-----------------------------------------------------------------------------------|---|---|---|---|----------|
| Attribute                                                                         | 0 | С | F | м |          |
| Must be safe                                                                      |   |   |   |   |          |
| Must be reliable                                                                  |   |   |   |   | 1        |
| Must be easily manufactured                                                       |   |   |   |   | 2        |
| Must be easily assembled by 1 or 2 people                                         |   |   |   |   |          |
| Could use a vertical blade                                                        |   |   |   |   | 3        |
| Must be able to power/charge groups of standard devices/appliances in remote home |   |   |   |   | 4        |
| Could be roof-mounted                                                             |   |   |   |   | 6        |
| Should be reasonably inexpensive (≤\$1000)                                        |   |   |   |   | 7        |
| Must be reasonably lightweight (~25 lbs)                                          |   |   |   |   | 8        |
| Must have safety features                                                         |   |   |   |   |          |
| Could use energy storage system (e.g. battery)                                    |   |   |   |   | 9<br>*im |

| Requireme     | ents/Metrics Table     |                                           |          |  |  |  |  |  |  |
|---------------|------------------------|-------------------------------------------|----------|--|--|--|--|--|--|
|               | Component              | Need or Objective Importance (5=most impo |          |  |  |  |  |  |  |
| 1             | The generator          | is able to charge household devices       | 5        |  |  |  |  |  |  |
| 2             | The wind turbine       | is reasonably priced                      | 4        |  |  |  |  |  |  |
| 3             | The wind turbine       | is durable                                | 3        |  |  |  |  |  |  |
| 4             | The wind turbine       | is lightweight                            | 3        |  |  |  |  |  |  |
| 5             | The entire assembly    | is safe                                   | 5        |  |  |  |  |  |  |
| 6             | The wind turbine       | is easy to assemble                       | 3        |  |  |  |  |  |  |
| 7             | The wind turbine       | is easy to manufacture                    | 4        |  |  |  |  |  |  |
| 8             | The wind turbine       | is able to withstand high winds           | 5        |  |  |  |  |  |  |
| 9             | The battery            | is reasonably sized for needs             | 5        |  |  |  |  |  |  |
| *importance r | anking: 5=most importa | nt, 1=least important                     | <u> </u> |  |  |  |  |  |  |

### Problem Definition

### Design Constraints

- Average of wind speed (California) = 14.86mph = 6.64m/s (market survey-charging)
- Price Range: less than \$800 total

### Design Requirements

- Needs to be able to be assembled by at most 2 adults
  - max height: 2 meters, max
     weight: 25 lbs per component
- Generate enough electricity for emergency
  - Operational Case 1: 300 watts
- Needs to be durable (withstand high wind speeds)

### **Problem Definition**

#### 1. 1814 city's wind speed (California)

|    | 1     | 6.33 | Santa Barbara, CA / 89,669 | AVERAGE | 14.86mph=6.64m/s |
|----|-------|------|----------------------------|---------|------------------|
|    | 2     | 6.36 | Lemon Grove, CA / 25,963   |         |                  |
|    | 3     | 6.37 | National City, CA / 59,543 |         |                  |
|    | 4     | 6.43 | Cardiff By The Sea, CA     |         |                  |
|    | 5     | 6.45 | Lincoln Acres, CA          |         |                  |
|    | 6     | 6.59 | La Presa, CA / 34,739      |         |                  |
| 2. | Price |      |                            |         |                  |

#### Market Survey Wind Turbine

| name        | price (\$) |
|-------------|------------|
| LISHUN-1000 | 340        |
| LISHUN-1500 | 633        |
| LISHUN-2000 | 730        |
| LISHUN-2500 | 1200       |
| LISHUN-3000 | 1466       |

#### Price of Generator Candidates

| Model            | Price (\$)    |  |  |  |  |  |  |  |
|------------------|---------------|--|--|--|--|--|--|--|
| IRFORA           | 167.88/167.99 |  |  |  |  |  |  |  |
| NE-200           | \$151.39      |  |  |  |  |  |  |  |
| AVAN-300W        | \$184.19      |  |  |  |  |  |  |  |
| AVAN-300W        | \$161.64      |  |  |  |  |  |  |  |
| FreeEnergy 1200W | \$159         |  |  |  |  |  |  |  |

#### 3. Power Output

|                       | Situation<br>Description                 | Devices                                                                                                                  | Time (hrs)                                                                                                   | Total Energy (KJ)                                                                                       |  |  |  |  |  |
|-----------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Operational<br>Case 1 | night<br>(temperature<br>low)            | <ul> <li>Lightbulbs<br/>(50w)</li> <li>Phones<br/>(10w)</li> <li>Heater<br/>(1000w)</li> <li>Radio<br/>(1.5w)</li> </ul> | <ul> <li>Lightbulbs<br/>(3hrs)</li> <li>Phones (1hr)</li> <li>Heater (3hr)</li> <li>Radio (12hrs)</li> </ul> | Lightbulbs (540 KJ)     Phones (36 KJ)     Heater (10800 KJ)     Radio (64.8 KJ)     Total: 11,140.8 KJ |  |  |  |  |  |
| Operational<br>Case 2 | Day time<br>(summer/<br>warm<br>climate) | <ul> <li>Phones<br/>(10w)</li> <li>Radio<br/>(1.5w)</li> </ul>                                                           | <ul> <li>Phones (1hr)</li> <li>Radio (12hrs)</li> </ul>                                                      | Phones (36 KJ)     Radio (64.8KJ) Total: 100.8 KJ                                                       |  |  |  |  |  |
| Operational<br>Case 3 | Day time<br>(winter/ cold<br>climate)    | <ul> <li>Phones         <ul> <li>(10w)</li> <li>Radio</li></ul></li></ul>                                                | <ul> <li>Phones (1hr)</li> <li>Radio (12hrs)</li> <li>Heater (2hrs)</li> </ul>                               | 7300.8kJ<br>Phone (36 KJ)<br>Radio (64.8 KJ)<br>Heater (7200 KJ)<br>Total: 7300.8 KJ                    |  |  |  |  |  |

11140.8 KJ/ 43200 s = 0.258 kW to charge the battery within 12 hours 0.129 kW to charge the battery within 24 hours

For Operational Case 1, all devices run for 3 hours. 540+36+10800+16.2=11392.2KJ 11392.2/(3\*60\*60)=1.0548 kw

## **Conceptual Design: Comparison**

### <u>Horizontal Axis Wind</u> <u>Turbine</u>

- Higher velocity → more power
- More efficient
- Less turbulent wind flow  $\rightarrow$  Less vibration
- More reliable

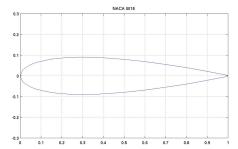
| Savonius VAWT | Modern HAWT | Giromill/Darrieus VAWT |
|---------------|-------------|------------------------|

#### Vertical Axis Wind Turbine

- Cheaper to produce
- Easy to install/repair
   → lower height
- Easy to transport
- Low speed blades → less risk to birds
- Functions in extreme weather (variable winds)
- Less noise
- Easy to scale down size

### Proposed Design: SWOT Analysis

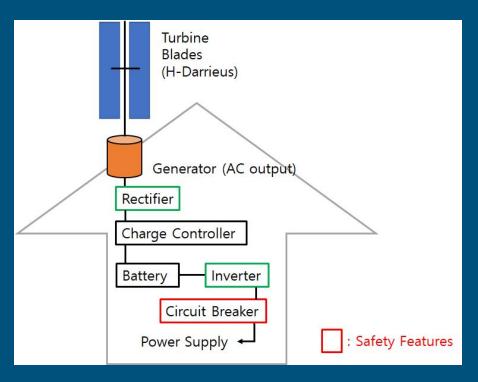
- H-Darrieus vertical-axis wind turbine
  - Strengths
    - Fairly efficient (30-40%)
    - Scales down
    - More easily maintained
    - Safe / easy to install
  - Weaknesses
    - Lower power output than HAWT
    - Less efficient than HAWT (40-50%)


- Opportunities
  - Good fit for market niche (emergency preparedness)
  - Cheap to produce / output
- Threats
  - Consumers may not want to pay price

## **Proposed Design**



- Design:
  - H-Darrieus vertical-axis wind turbine
    - 30-40% efficiency
    - Translates well to small scale
    - Easy to install / maintain
  - 300W 3-phase PMA
    - Lower-end RPM (600)
    - Lightweight (~8 lbs / 3.6 kg)
    - Desirable power output
    - Includes rectifier circuit






#### Jeremiah

### **Assembly Schematic & Safety Features**

- Remaining design decisions:
  - How wind turbine connects to devices/appliances within a house
  - Possible backup battery system



### Key Design Decisions and Justifications

#### • Process:

- Power requirements
- PMA selection
- HAWT vs. VAWT comparison

|                       | Situation<br>Description                                                               | Devices                                                                                                                  | Time (hrs)                                                                                                   | Total Energy (KJ)                                                                                                                      |
|-----------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Operational<br>Case 1 | night<br>(temperature<br>low)                                                          | <ul> <li>Lightbulbs<br/>(50w)</li> <li>Phones<br/>(10w)</li> <li>Heater<br/>(1000w)</li> <li>Radio<br/>(1.5w)</li> </ul> | <ul> <li>Lightbulbs<br/>(3hrs)</li> <li>Phones (1hr)</li> <li>Heater (3hr)</li> <li>Radio (12hrs)</li> </ul> | <ul> <li>Lightbulbs (540 KJ)</li> <li>Phones (36 KJ)</li> <li>Heater (10800 KJ)</li> <li>Radio (64.8 KJ)</li> </ul> Total: 11,140.8 KJ |
| Operational<br>Case 2 | hal Day time<br>(summer/<br>warm<br>climate)<br>• Phones<br>(10w)<br>• Radio<br>(1.5w) |                                                                                                                          | <ul><li>Phones (1hr)</li><li>Radio (12hrs)</li></ul>                                                         | <ul> <li>Phones (36 KJ)</li> <li>Radio (64.8KJ)</li> <li>Total: 100.8 KJ</li> </ul>                                                    |
| Operational<br>Case 3 | Day time<br>(winter/ cold<br>climate)                                                  | <ul> <li>Phones<br/>(10w)</li> <li>Radio<br/>(1.5w)</li> <li>Heater<br/>(1000w)</li> </ul>                               | <ul> <li>Phones (1hr)</li> <li>Radio (12hrs)</li> <li>Heater (2hrs)</li> </ul>                               | 7300.8kJ<br>Phone (36 KJ)<br>Radio (64.8 KJ)<br>Heater (7200 KJ)<br>Total: 7300.8 KJ                                                   |

0.129 kW to charge the battery within 24 hours

### Key Design Decisions and Justifications

#### • Process:

- Power requirements
- PMA selection
- HAWT vs. VAWT comparison

| Option # | Model            | Price (\$)    | Rated Power (W) | Voltage (Volts) | Rated Speed (RPM) | Weight (lbs)  | Dimensions                      |
|----------|------------------|---------------|-----------------|-----------------|-------------------|---------------|---------------------------------|
| 1        | IRFORA           | 167.88/167.99 | 300             | 12/24           | 750               | 11.02         | 8.27in x 8.27in x 8.27in        |
| 2        | NE-200           | \$151.39      | 200             | 12              | 1100              | 7.26          |                                 |
| 3        | AVAN-300W        | \$184.19      | 300             | 48              | 600               | 7.94          | Height = 70mm, Diameter =150mm  |
| 4        | AVAN-300W        | \$161.64      | 300             | 48              | 600               | not specified | 70mm / 2.8in, 81mm / 3.2in      |
| 5        | FreeEnergy 1200W | \$159         | 1200            | 12/24/48 DC     | not specified     | 11.125        | Diameter:10.7cm, Length:14.85cm |

### Finalized Dimension:

NACA 0018 Airfoil

Diameter: 2.25m

Height: 1.58m

Chord Length: 0.224m

**Turbine Blades Number: 2** 

Resulted RPM under wind speed of 6.64m/s: 170RPM



## Major Components Table

| Components | Purchased/<br>Machined | Description                                                                                                                      | Product Link                                                                                                  |
|------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Generator  | Purchased              | AVAN-300W : Rated Power 300w, Rated<br>wind speed 600 RPM, voltage 48v<br>PS. it will be modified after optimization<br>analysis | https://www.amaz<br>on.com/AVAN-300<br>W-Three-Phase-al<br>ternator-Permane<br>nt-Generator/dp/B<br>08MZG48CM |
| Blades     | Machined               | n/a                                                                                                                              | n/a                                                                                                           |
| Battery    | Purchased              | n/a                                                                                                                              | n/a                                                                                                           |
| Gear Box   | Purchased              | n/a                                                                                                                              | n/a                                                                                                           |

# Project Schedule

|           |    | Task |                                                                      |         |              |                | 2021 |    |      |      |       |          | November | 2021 |      |      |      |      |    | December | r 2021 |    |
|-----------|----|------|----------------------------------------------------------------------|---------|--------------|----------------|------|----|------|------|-------|----------|----------|------|------|------|------|------|----|----------|--------|----|
|           |    |      |                                                                      |         |              | Finish 👻       | 5 8  | 11 | 14 1 | 7 20 | 23 26 | 5 29     | 1 4      | 7    | 10 1 | 3 16 | 19 2 | 2 25 | 28 | 1 4      | 7      | 10 |
|           | 1  | -    | 4 Team formation and scope                                           | 7 days  |              | Sun 10/10/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 2  | -    | Research how wind turbines operate and current designs on the market | 5 days  | Sat 10/2/21  |                |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 3  | -    | Meeting with client                                                  | 1 day   | Thu 10/7/21  | Thu 10/7/21    |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 4  |      | Draft organizational chart and team contract                         | 6 days  | Mon 10/4/21  | Sun 10/10/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 5  |      | 4 Quantifying mission statement                                      | 5 days  | Sun 10/10/21 | l Thu 10/14/21 | , I  | 2  | 1    |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 6  | -    | Assign requirements based on estimated needs                         | 5 days  | Sun 10/10/21 | Thu 10/14/21   | - 0  |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 7  |      | Quantify energy needs                                                | 4 days  | Mon 10/11/2  | 1 Thu 10/14/21 |      |    | 6    |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 8  | -    | Conduct situational analysis                                         | 3 days  | Tue 10/12/21 | Thu 10/14/21   |      |    | Ú    |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 9  | -4   | Preliminary design                                                   | 11 days | Thu 10/14/21 | l Thu 10/28/21 |      | Г  |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 10 |      | Create 3 preliminary wind turbine designs and explore attributes     | 6 days  | Thu 10/14/21 | Thu 10/21/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 11 | -4   | Select one design based on needs & constraints                       | 6 days  | Thu 10/14/21 | Thu 10/21/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 12 |      | Draw schematic of selected design                                    | 11 days | Thu 10/14/21 | Thu 10/28/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 13 | -    | 4 Optimization                                                       | 6 days  | Thu 10/21/21 | l Thu 10/28/21 |      |    |      | _    |       | <b>-</b> |          |      |      |      |      |      |    |          |        |    |
|           | 14 |      | Optimize wind turbine specifications based on needs & constraints    | 6 days  | Thu 10/21/21 | Thu 10/28/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
| <b>RT</b> | 15 |      | 4 Midterm Presentation                                               | 8 days  | Thu 10/21/21 | l Sun 10/31/21 |      |    |      | _    |       |          | 1        |      |      |      |      |      |    |          |        |    |
| CHART     | 16 | -    | Create powerpoint presentation                                       | 6 days  | Thu 10/21/21 | Thu 10/28/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
| E         | 17 |      | Write report segments on sections completed                          | 8 days  | Thu 10/21/21 | Sun 10/31/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
| GANTT     | 18 | -    | 4 Create models                                                      | 5 days  | Sun 10/31/21 | l Thu 11/4/21  |      |    |      |      |       | Г        | 1        |      |      |      |      |      |    |          |        |    |
| Ŭ         | 19 |      | Create 3D SolidWorks model of parts                                  | 5 days  | Sun 10/31/21 | Thu 11/4/21    |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 20 | -4   | Conduct SolidWorks simulation testing                                | 5 days  | Sun 10/31/21 | Thu 11/4/21    |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 21 | -4   | Create electrical model                                              | 5 days  | Sun 10/31/21 | Thu 11/4/21    |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 22 |      | <ul> <li>Manufacturing plan</li> </ul>                               | 6 days  | Thu 11/4/21  | Thu 11/11/21   |      |    |      |      |       |          | _        |      |      |      |      |      |    |          |        |    |
|           | 23 | -4   | Compile components/parts orders                                      | 6 days  |              | Thu 11/11/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 24 |      | Create design drawings from Solidworks                               | 6 days  | Thu 11/4/21  | Thu 11/11/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 25 | -4   | Finalize files for 3D printing                                       | 6 days  |              | Thu 11/11/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 26 |      | A Review Design                                                      | 6 days  |              | l Thu 11/25/21 |      |    |      |      |       |          |          |      |      | Г    |      |      |    |          |        |    |
|           | 27 | -4   | Meeting with client                                                  | 1 day   |              | Thu 11/18/21   |      |    |      |      |       |          |          |      |      |      | í    |      |    |          |        |    |
|           | 28 |      | Adjustments to design, if need                                       | 6 days  |              | Thu 11/25/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 29 | -4   | <ul> <li>Final Presentation</li> </ul>                               | 18 days | Thu 11/18/21 |                |      |    |      |      |       |          |          |      |      | Г    |      |      |    |          |        |    |
|           | 30 |      | Create PowerPoint presentation                                       | 8 days  |              | Sun 11/28/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        |    |
|           | 31 | -4   | Finalize final report                                                | 18 days | Thu 11/18/21 | Fri 12/10/21   |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        | =  |
|           |    |      |                                                                      |         |              |                |      |    |      |      |       |          |          |      |      |      |      |      |    |          |        | 1  |

Elaine

# Detailed schedule with task assignments for the rest of the quarter.

Detailed schedule:

• Week 6 & 7:

1. Detailing the design by building the 3D model (Solidworks) and electrical mode based on the dimension from calculations.

2. Testing the design with the Solidwork simulation (No manufacturing will be done in this quarter, thus only simulation with software will be available)

- 3. Planning of the manufacturing phase.
- Week 8:

1.Hold a design review meeting with the team and the sponsor and adjust design as needed

• Week 9:

1. Finalize presentation and design report for UCI's MAE 189 capstone design meeting.

List any other resources and questions/concerns that need to be resolved

- Guidance in optimization analysis (Power Output vs RPM with fixed Height/Diameter, Efficiency vs RPM with fixed Height/Diameter)
- Guidance in measuring losses (Mechanical losses of the blades, Electrical losses of the turbine)



# **Thank You!**

**Questions?**