

MAE 189 Capstone Design Team 8: Aerodynamics Predictor

Team Members: Ashton Wheelahan, Khanh Nguyen, Quy Nguyen, Tai Vo Project Sponsor: Professor Johnson

- Project Overview
- Design Attributes and Requirements
- Key Design Decisions
- Analysis and Calculations
- Future Plans and Timeline
- Conclusion

- Validate and verify the predictive capabilities of the program XFOIL through experimentation with wind tunnel testing
- Validate the the lift and drag calculations of a 2D airfoil
- A determination of the TRL of XFOIL with supporting evidence and documentation

• Objectives

- Must be able to validate and verify our predictions to show the technical readiness level of XFoil
- Must compare real world experiments to program predictions to mathematical predictions

• Constraints

- Testing 3D airfoils against a 2D program
- Not all results are perfect representations

- Functions
 - Must have comparable data: Coefficient of lift and drag
 - Validated through pre existing math
- Means
 - Testing 3 airfoils in wind tunnels and preliminary data
 - Validating through basic shapes

- Test multiple airfoils shape through experimentation with the wind tunnel
 - NACA 0012, NACA 0015, NACA 0021
- Observe and compare coefficient of lift and drag with results from XFOIL
- Compare results to mathematical equations
 - Flat plate and cylinder

Option 1 - Use medium size wind tunnels in ELF

• Unable to use due to instrumental failure

Key Design Decisions

Option 1 - Use medium size wind tunnels in ELF

Quy

Option 2 - Use small wind tunnels in ET

Results are prone to inaccuracy due to extraneous variables

Key Design Decisions

Option 3 - Shadow grad students in the big wind tunnel

Option 3 - Shadow grad students in the big wind tunnel

- Showing that XFoil works with basic shapes
- Testing flat plate and circle
- Used a very thin airfoil to show Boundary Layers
- Blausius solution gives flat plate drag at a given reynolds number

- According to multiple academic writings,
 - XFOII is limited on:
 - Flow Separation (non-converging flow)
 - Instant trassional period between laminar and turbulent flow
 - Empirical formulation to predict coefficient of drag.

Flat Plate: Viscous

-2.0 Т ХFOIL v б.99	flat plate Ma = 0.000							
_1 5		Re = 0.100×10° N _{cr} = 9.000						
-1.51								
$\hat{\Gamma}$		α	C	C _M	C	Top Xir	Bot Xir	
^C p		-5.000	-0.5478	-0.005	0.05160	1.000	0.096	
-1 0		-4.000	-0.4710	-D.DOS	0.03884	1.000	D.181	
1.0		-3.000	-0.3997	D.D27	0.08914	1.000	D.541	
		-2.000	-0.2282	-0.002	0.01794	1.000	0.054	
		<u>=1.000</u>	-0.1240	0.002	0.01280	1.000	0.073	
-0.5+		0.000	0.000	<u>0.00</u> 0	0,00919	1.000	1.000	
					- 022012901			
			-41.22202-			-4-010-		
		<u></u>			20103302	-U.040-		
0.0					Halding			
			0.6249	-0.005	0.06783	0.067	1.000	
		7.000	0.6835	-D.D18	0.08549	0.053	1.000	
Mode establish		8.000	0.7113	-0.031	0.10153	0.048	1.000	
0.5		9.000	0.7249	-0.039	0.11637	0.043	1.000	
		10.000	0.7397	-0.044	0.13141	0.039	1.000	
		11.000	0.7511	-0.048	0.14632	0.035	1.000	
		12.000	0.7671	-0.056	0.16055	0.032	1.000	
1.01		13.000	0.7854	-0.062	0.17581	0.029	1.000	
	< <u> </u>	14.000	0.8032	- N. DG7-	-0-1 9062	0.026	1.000	
		15.000	0.8246	-0.073	0.20557	0.023	1.000	
		16.000	0.8507	-0.081	0.22117	0.019	1.000	

Circle - Pressure Vectors

Key Equations

Name of Formula	Formula	Inches of water to	$\Delta p_{pa} = \Delta p_{inch/water} * 248.84$			
Room Pressure in Pascals	$p_{pa} = \frac{0.00348}{T} * (p - 0.003796 * R_h * e_s)$	Velocity of pitot tube	$V_{pitot} = \sqrt{\frac{2^* q_{Tunnel Tap}}{1.22}}$			
Change in Pressure	$\Delta P = P_o - p_{ts} = \frac{1}{2} \rho V_{ts}^2$	Dynamic Pressure	$\Delta p = \frac{1}{2} \rho V_{\infty}^2$			
Normalized Velocity	$V_{normalize} = \frac{V}{25}$	Drag Coefficient	$C \equiv \frac{F_a - F_{a,0}}{F_a} \text{ or } C \equiv \left \frac{F_z}{F_a} \right $			
Relative Humidity	$p = \rho RT$		$D = \frac{1}{2} \rho V_{\infty}^2 A_f \qquad D = 1 \frac{Dynamic Pressure^* \pi^* 0.075^2}{4} $			
% Error Formula	$\% Error = \frac{Experimental-Actual}{Actual} * 100$	Reynold's Number	$Re = \frac{\rho v L}{\mu}$			
Normalized Dynamic Pressure	$q_{normalize} = \frac{q}{q_{max}}$					
Normalized Stagnation Pressure	$p_{stag \ normalize} = rac{p_{stag}}{p_{max \ stag}}$		Khanh			

- Testing 3 airfoils NACA 0012, NACA 0015, NACA 0021
- Reynolds number of ~64000 (15mph) to 130000 (30mph)
- Comparing experimental results to XFoil and math solutions

Coefficient of Lift vs Angle of Attack (NACA 0012)

Coefficient of Lift vs Angle of Attack (NACA 0015)

Coefficient of Lift vs Angle of Attack (NACA 0021)

Inviscid

Coefficient of Drag vs Angle of Attack (NACA 0012)

Inviscid e Laminar Turbulent

Coefficient of Drag vs Alpha

Coefficient of Drag vs Angle of Attack (NACA 0015)

UCI Samueli

School of Engineering

Project Schedule

Week	1	2	3	4	5	6	7	8	9	10
Team Organization										
Verify Basic Shapes										
Project Website										
Midterm Report										
Mathematical Calculations										
NACA Airfoil Analysis										
XFOIL Data Collection										
Experimental Collection										
Numerical Comparisons										
Data Validation										
Final Report										
								Completed		
								Planed		
								Overdue		
	Khanh							nh		

- A good understanding of coding with XFOIL
- Data from wind tunnel experiment is still in progress
- Using the experimental data and translate it to needed values
 - Compare these coefficients with the results from XFOIL

- Drela, M. (2000). *XFOIL Subsonic Airfoil Development System*. Web.mit.edu. Retrieved February 8, 2023, from https://web.mit.edu/drela/Public/web/xfoil/
- T.K. Barlas. (2009, September 15). Review of State of the art in Smart Rotor Control Research for wind turbines. Progress in Aerospace Sciences. Retrieved February 1, 2023, from https://www.sciencedirect.com/science/article/pii/S0376042109000293
- *Airfoil plotter (nacaw2415-il)*. Airfoil plotter (NACA2415-IL). (n.d.). Retrieved February 8, 2023, from http://airfoiltools.com/plotter/index?airfoil=naca2415-il
- YouTube. (2021, April 11). *Airfoil analysis with Xfoil*. YouTube. Retrieved February 8, 2023, from https://www.youtube.com/watch?v=mYrGWZmPsu0
- Ohio State University Wind Tunnel Tests. NREL.gov. (n.d.). Retrieved February 8, 2023, from https://www.nrel.gov/wind/nwtc/airfoils-osu-data.html
- XFoil Docs: Plotting. XFoil docs. (n.d.). Retrieved February 8, 2023, from https://v0xnihili.github.io/xfoil-docs/plotting/
- *Lift & Drag Polars*. Airfoil lift and drag polar diagrams. (n.d.). Retrieved February 8, 2023, from http://airfoiltools.com/polar/index
- Hays. (2019, September 18). Xfoil tutorial. YouTube. Retrieved February 8, 2023, from https://www.youtube.com/watch?v=N4j-5Ypfyho
- Selig, M. (n.d.). *UIUC Airfoil Coordinates Database*. UIUC airfoil data site. Retrieved February 8, 2023, from https://m-selig.ae.illinois.edu/ads/coord_database.html

UCI Samueli School of Engineering

Thanks for listening!

Does anyone have any questions?

Contact us:

Ashton Wheelahan - awheelah@uci.edu

Khanh Nguyen - <u>khanhn10@uci.edu</u>

Quy Nguyen - <u>quydn@uci.edu</u>

Tai Vo - <u>taiv@uci.edu</u>