



# UCI Zephyr Project - Midterm Presentation



### University of California, Irvine

MAE 189 - Capstone Project

Felix Jose Avila Aguayo, Gerardo Barajas-Velasco, Nausir Firas, Andrew Lam, Brendan Watson





## **Problem Definition and Goals**

• Problem Definition

A limited number of small, portable charging devices for camping applications exist in the current market. Our goal is to design a wind turbine that will be small enough to fit in a hiking backpack, be quickly assembled, and be capable of charging several small electronic devices overnight.

- Goals
  - Create a design that is lightweight, small, and compact
  - Allow the product to be quickly assembled
  - Maximize energy output for charging
  - Minimize the cost of manufacturing



\*Current market Portable Wind Turbine\*

Gerardo Barajas

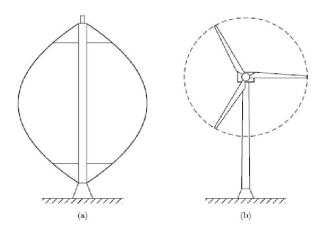


# Design Attributes

### Key design principles:

- Reliability
- Ease of Assembly
- Ease of Operation
- Portability
- Capability

| Attribute                                                                                                                              | 0 | C | F | М |
|----------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| Must be easy to manufacture and assemble                                                                                               | X |   |   |   |
| Should be simple and compact                                                                                                           | X |   |   |   |
| Must be reliable                                                                                                                       | X |   |   |   |
| Must be safe                                                                                                                           | X |   |   |   |
| Should be easy to operate                                                                                                              | X |   |   |   |
| The packing size and weight should be very small to be added to a hiking backpack.                                                     |   | X |   |   |
| Must be able to charge portable appliances of a camping family (2 Cell Phone, Camera battery Charger, flashlight, backup battery bank) |   |   | Х |   |
| Might use an energy storage system                                                                                                     |   |   |   | Х |
| Might be collapsible                                                                                                                   |   |   |   | Х |
| Must resist deterioration from natural elements (rain, dust)                                                                           | X |   |   |   |


#### Brendan Watson



## **Key Mechanical Design Decisions**

### Wind Turbine Type

• Vertical versus Horizontal



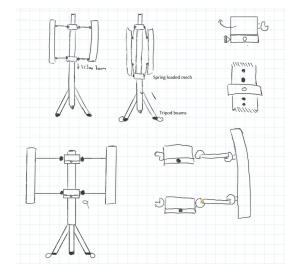
**Power Generated** 



V = 10 m/s

|         | Ср   | Radius (ft) | Height (ft) | Wattage |
|---------|------|-------------|-------------|---------|
| Н Туре  | 0.38 | 0.5         | 1.25        | 27.0    |
| D Type  | 0.40 | 0.5         | 1.25        | 28.5    |
| Helical | 0.43 | 0.5         | 1.25        | 30.6    |
| HAWT    | 0.45 | 1           | N/A         | 80.2    |

Andrew Lam


#### \* (A) Vertical and (B) Horizontal Turbine types\*



## **Key Mechanical Design Decisions**

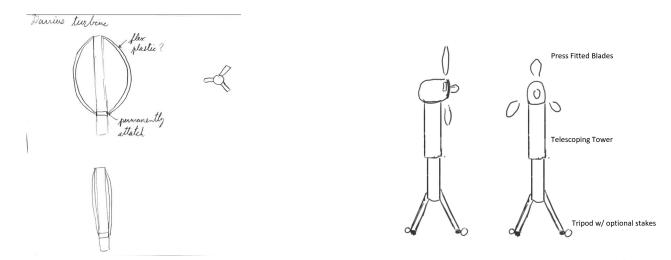
### **Portability Mechanisms**

- Tower Subsystem
  - Telescoping vs Multiple Components Tower
- Blade Subsystem
  - Removable vs Retractable Blades
- Base Subsystem
  - Stake versus Tripod



H type turbine -Umbrella Cast concept

Andrew Lam




D type turbine -

"Bend-a-Plastic" concept



## **Other Mechanical Design Concepts**



"Collapsed HAWT" concept

Andrew Lam



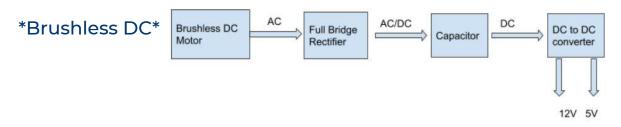
## **Key Electrical Design Decisions**

### Motor Type

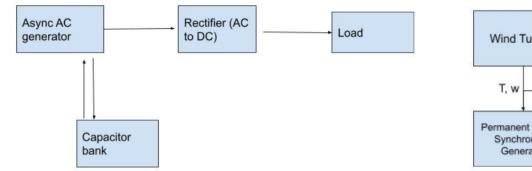
- Brushless DC
- Asynchronous AC
- · Synchronous AC

### **Power Conditioning**

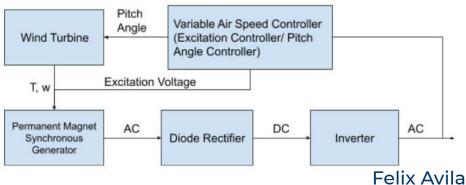
- Rectification
- DC to DC conversion
- . Inverter


## Criteria

- Power/weight ratios
- Volts/rpm ratios
- Efficiency
- Maintenance
  - Requirements
- Cost



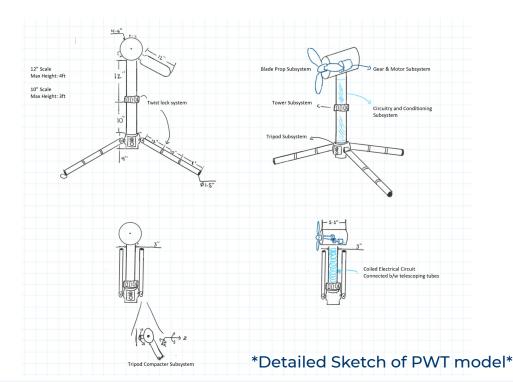




## **Electrical Concepts Diagrams**



#### \*Asynchronous AC\*




#### \*Synchronous AC\*







# Design Summary



- Design Features
  - Horizontal Axis Wind Turbine
  - Brushless DC Generator
  - Telescoping tower
  - Folding and telescoping tripod
  - Removable blades

**Nausir Firas** 



# Design Summary Cont.

| Strengths                                                                                                                                                                                                                                                                                                                                                          | Weaknesses                                                                                                                                                                                                                                                                                                                                      | Opportunities                                                                                                                                     | Threats                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Incorporating the<br/>horizontal wind turbine<br/>allows for far greater<br/>efficiency compared to<br/>vertical wind turbines</li> <li>The telescoping base<br/>allows for the design to<br/>be small and compact</li> <li>The use of a BLDC<br/>generator allows for<br/>low maintenance and<br/>high durability while<br/>minimizing weight</li> </ul> | <ul> <li>The design would need to incorporate a method of facing optimal wind direction</li> <li>Portability mechanisms are complex and add more failure points</li> <li>Ability to generate enough power to support the charging of all the requested items overnight</li> <li>Blade sizing can affect fit within a hiking backpack</li> </ul> | <ul> <li>Provide more power<br/>than current market<br/>designs</li> <li>Provide a cheaper<br/>product than current<br/>market designs</li> </ul> | Potentially low<br>demand for such a<br>product because it<br>would not provide<br>enough power for<br>extended camping<br>trips |

#### **Nausir Firas**





# Design Schedule

- Detailed Engineering Analysis
- 3D Modeling and Drawings
  - 5/2-5/12
- Prototype Plan
  - 5/9-5/12
- Design Verification
  - 5/9-5/12

- Mechanical (Brendan, Andrew, Nausir)
  - Blades
  - Tower and Tripod
  - Generator Housing
  - Portability Mechanism
- Electrical (Gerardo, Felix)
  - Generator
  - Control System
  - Circuit Board

#### **Nausir Firas**



# Concerns

- Verification of power generated (ANSYS or MatLab)
- Tower material choice (Acrylic vs PVC Pipe)
- Wiring complications due to telescoping tower
- 3D printing blades and blade housing
- Orienting mechanism

#### Brendan Watson





# Thank you for listening Questions?