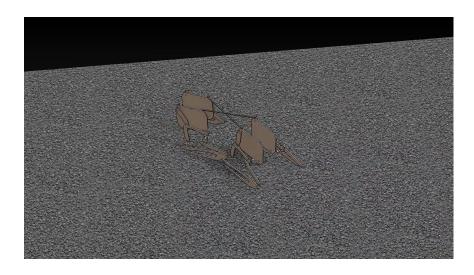


Quad Squad: Steerable Walker Project

Members: Myia Dickens, Justin Lin, Jeremy Jiang, Dylan Salcido Sponsors: Dr. Michael McCarthy and Kevin Chen

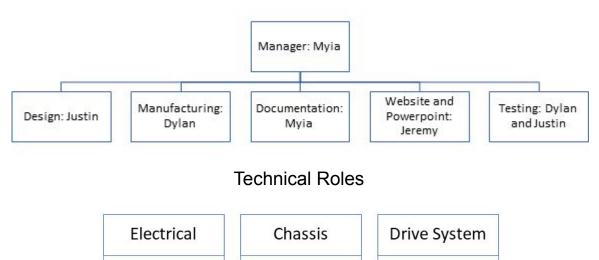
Myia Dickens



Team Goals and Purpose

The goal of this project to design, build, and test a steerable mechanical walker.

Requirements:


- one drive motor and one steering motor
- RC control to define forward and backward movement and left and right turn to steer
- four legged design (eventually a six legged design)
- a demonstration of its movement around a circle or in figure-eight in both directions

Team Organization

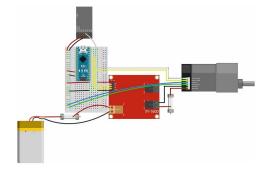
Myia

Organizational Roles

Justin

Dylan

Jeremy

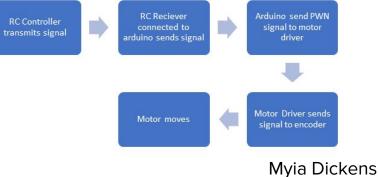

Schedule (Tentative)

- 1. Team Organization and Goals
- 2. Technical Roles and Design Concepts
- 3. Solidworks design for Subsystem Prototypes
- 4. Identify parts list and fabricate parts for subsystems
- 5. Assembly of subsystem prototypes
- 6. Define A-Walker Prototype
- 7. Purchase and fabricate parts of the A-Walker
- 8. Define B-Walker Prototype
- 9. Purchase and fabricate parts of the B-Walker
- 10. Demonstration

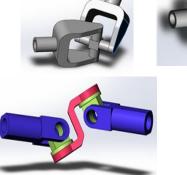
Myia Dickens

Electrical

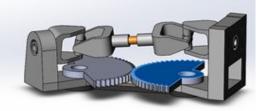
Parts for the electrical were pre-chosen by Dr. Brandon Tsuge from the Bored Robot



Motors have been wired and we are moving towards proportional control

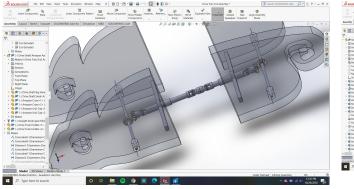


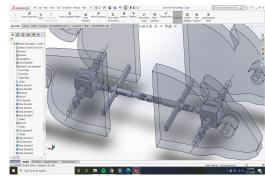
Electrical Flow Chart



Drive System

Drive Train Linkage Designs:

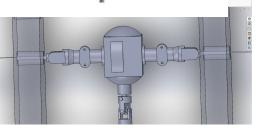


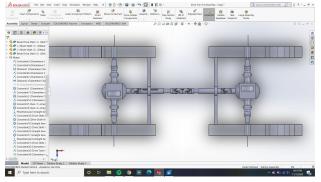


Min: 4.17 in

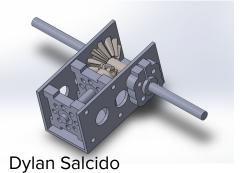
Dylan Salcido

Drive System: Right Angle Bevel



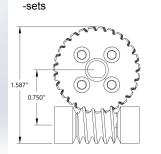


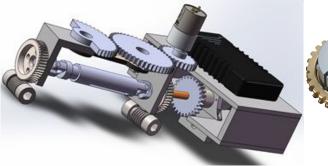

Constantial Constraints
Constantial Constraints
Constantial Constraints
Constaints
Constraints
Constraints
Constraints
Constr



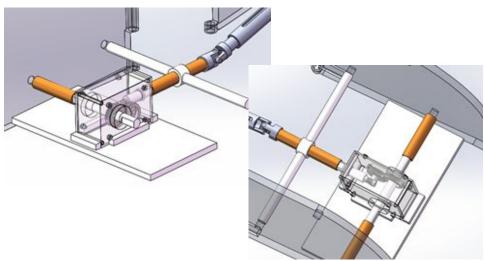
637222 Product Insight #2 In some robotics applications, a right angle gearbox is needed. With the 637222 Bevel Gear Set, it is possible to build your own. This gear set is designed to fit inside of Actobatics

Servo City Model

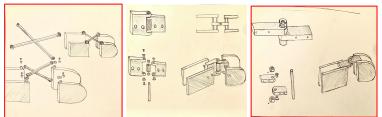

Drive System


Worm Gear Box in Drive train:

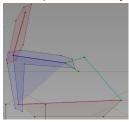
Worm Gear for right angle power transmission



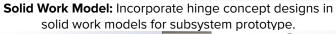
Greartisan DC 12V 250RPM 2Kg.cm 8mm Double Shafts Self-Locking Reversible Worm Gear Motor with Cable, High Torque Speed Reduction Motor, Turbine Electric Gearbox


Rated Voltage: DC 12V Reduction Ratio: 1:32 No-Load Speed: 250RPM Rated Torque: 2Kg.cm Rated Current: 1400/1260mA (Positive Rotation / Negative Rotation) Error: ±10% D Shaped Output Shaft Size: 8*15mm (0.31" x 0.59") (D*L) Gearbox Size: 58.1 x 40.11 x 36mm (2.29" x 1.58" x 1.42") (L"W"H) Motor Size: 31 x 57.2mm (1.22" x 2.25") (D*L) Mounting Hole Size: M4 (not included) Main Material: Metal, Electronic component Wire Length : 20cm

https://www.amazon.com/Greartisan-Self-Locking-Reversible-Reduction-Electric/dp/B07YBXTR2P/ref=sr_1_30?dchild=1fbg clid=C10KCO1wufn8BRCwARIsAKzP695cFhfGugledgOn21grH1ZNJ29-LwXWK2FweM131LICzVk7sTSz1_AaAt9wEALw_wcBthyadid= 431880177527&hvdev=c&hvlocphy=9031590&hvnetw=g&hvqmt=b&hvrand=1700786740823473599&hvtargid=kwd-5241185047 Bhydadcr=10075 11277067Ekeywords=worm%2Bdrive%2BgearboxEgid=1604251876Esr=8-30Etag=googhydr-20Eth=1



Concept Selection for hinge design



Goal	Weight	Cross Linkage Hinge Design	Vertical Hinge Design	Horizontal Hinge Design
Structural Integrity	0.3	0.6	0.6	0.9
Easy to assemble	0.15	0.3	0.15	0.3
Ease of manufacturing	0.15	0.3	0.15	0.3
Functional with steering mechanism	0.2	0.4	N/A	0.6
Interior space for installment of electronics and gears	0.2	0.4	N/A	0.6
Total Points		2	0.9	2.7
Ranking 1-3				

Leg mechanism: were created using the provided geogebra template made by project advisor, Kevin.

Mock Model: Cardboard model of hinge to chassis assembly were made to test and verify for design feasibility and to estimate the size of the steerable walker.

Upcoming Goals:

Week 6 and 7: Finalize the subsystem and create the design for the A-Walker

Week 8 and 9: Evaluate A-Walker performance to determine B-Walker Design

10th Week: Demonstration

Possible Future Work:

Six Legged Walker, Stride Adjustment, Position Sensors, Autonomous operation