Fall 2019 Design Review

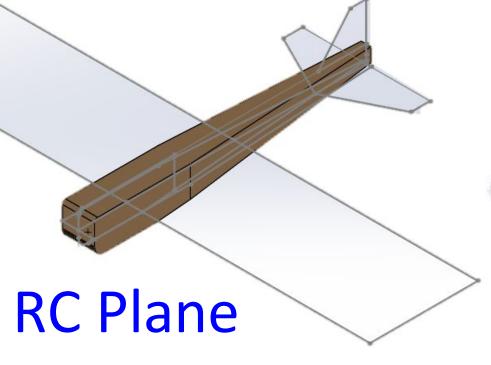
Background

Control surfaces such as ailerons, elevators, and rudders on planes cause drag. The morphing wing proposes a more environment friendly and fuel efficient wing.

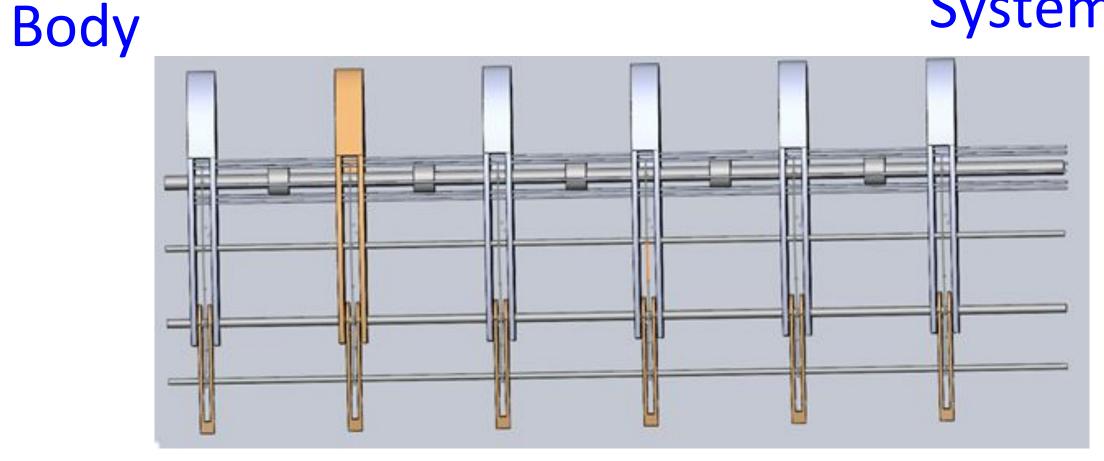
Goal and Objectives

Design, fabricate, and test first morphing wing plane at UCI utilizing a torsional mechanism

Fall	•	Design CAD models for wing and RC body
Winter		Fabrication of wing and body Wind tunnel tests


Spring • Flight testing and redesign

Requirements


- Capable of generating increased lift by bending "flaps" of wing as compared to traditional aircraft wings
- Zero control surfaces
- Flexible lightweight skin < 1lb
- Light weight components for inner structure of wing < 2 lbs
- Wing is capable of being housed in a flight capable RC plane
- Entire plane < 7 lbs

Current Status


Wing Pulley System

Inner Wing Structure Assembly Team

Advisor: Edwin A. Peraza Hernandez					
Team Lead: Taajza Singleton					
Subteams					
RC Plane Body	Morphing Wing	Wind Tunnel			
Taajza S. Danny T.	Edgar H. Mingqing Y.	Ernesto G. Joshua F.			

Contact: Edwin A. Peraza Hernandez <eperazah@uci.edu> Taajza Singleton <tssingle@uci.edu>

Innovation >

- Tensegrity utilizes adjustable tension among one-dimensional
- interacting members in order to create different three-dimensional structures

Next Steps

Fabricate RC plane body and wing
Conduct wind tunnel tests of different 3D printed airfoils

The Bigger Picture

Changing airfoil shape mid-flight will produce more lift/drag depending on flight section (liftoff, cruise, landing)
More efficient flight will reduce engine thrust required to provide additional lift
Less engine thrust reduces cost of flight and reduces environmental impact
Can be applied to small aircraft or UAV (unmanned aerial vehicle)