Spacecraft Thermal
 Management Systems

Project Background

-CubeSats operate at a higher range of temperature than anything found on earth yet they must still be able to manage it -Mechanical hardware can prove to be inefficient when it comes to smaller satellites such as these
-A Variable Electrochromic Device (VED) can absorb or reject heat as desired -A VED can be operational with just a simple electrical current that runs through its membrane and in between its slides, allowing it to change its emissivity

Goal

-Design, manufacture and test a prototype VED by summer 2020

Objectives

-Can withstand P < 10e-3 Pa
-Gel-Electrolyte conductivity > 10e-4 S/cm -Emissivity: $0.2<\varepsilon<0.8$ -Consistent NiO \& WO_3 deposition

Fig 1: Schematic of Variable Emissivity Device (VED)
 uniform deposition

Fig 5: Preliminary vacuum chamber design

Fig 3: Initial gel-electrolyte synthesis

Fig 6: Initial orbit simulation

Fig 4: Tungsten slide with uniform deposition

Fig 7: Emissivity testing set up for the E-ink team

Timeline

Fall 2019

-Synthesize preliminary gel -Design and manufacture an electrode holde -Build Test Setup for Emissivity Measurement

Spring 2020

A complete report of simulation reports will be generated -Change the color of films using the potentiostat.
-Begin integration of WO3 and NiO films and gel-electrolyte. -System Assembly

Summer 2020
-Review the year and establish what worked and what didnt -Develop new tactics to tackle inefficiency -Establish improved structure and apply it for the upcoming year

Team Budget

Fig 8: Total budget comes out to be $\$ 7,879$ and is broken down per team in the following way

Team Organization

