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● Signals generated by eye and physical movements as well 
as visually evoked potentials (SSVEPs, P300) should not 
be used to decode outputs

● BCI must decode an idle state and three active states 
generated by motor imagery

● Electrodes can not be invasive and must be comfortable 
to wear for long periods of time

● Artifacts (blinks, noise, muscle signals, etc.) must be 
filtered out

● EEG Cap: Non-invasive method of acquiring brain signals 
via electrodes

● Intan Amplifier: microchip that amplifies and converts EEG 
signals into digital data

● Arduino: microcontroller that samples data from the intan 
amplifier

● Jetson Nano: Linux PC used to operate decoding model
○ Preprocessing: Artifacts are filtered and Fourier 

Transform is applied to segmented data
○ Pattern Recognition: Machine learning algorithm 

recognizes motor imagery patterns
○ Output: Communicates control signals to video game

Hardware

Background:
● People with complete or severe loss of motor functions can 

still generate specific brain signals through motor imagery
● BCI’s can analyze these signals and assign an output for 

various applications  

Goal:
● Decode three active motor imagery states and one passive 

state to control a video game
● Allow future development of systems that utilize 

mind-based inputs
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Electrophysiology & EEG Data

● Testing Open BCI’s capabilities with signal acquisition, 
while learning how to properly adjust the cap and reduce 
impedances
○ Selected cap for final BCI system 

● Training model created to see if distinct patterns can be 
determined between left and right hand movement through 
motor imagery 

● Communication between all hardware components
● Researching deep learning algorithms that will be tested 

once data is acquired
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Brain Signals To Video Game

● Test the hardware capabilities and improve design to 
diminish possible noise and artifact generation

● Study motor imagery responses to understand which 
commands create distinct responses
○ Create training models in order to study four different 

commands
● Configure preprocessing parameters (filters, fast Fourier 

transform, sampling size, etc.)
● Gather data to train machine learning algorithm to decode 

distinct motor imagery events

Next Steps

ERD/ERS time-frequency maps (left side) 
and topographical maps of mu ERD (right 
side) of a subject during execution (upper 
panel) versus imagination of a right hand 
movement (lower panel).

An example of raw EEG data for 6 different 
channels. Prior to plotting, the data is referenced. 
In this case, a common average is being used.


