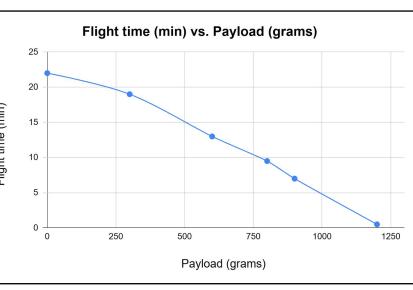
Winter 2025 | Design Review

EXECUTIVE SUMMARY

 \succ Our objective is to create a UAV system capable of monitoring these high-risk wildfire areas. We proposed a drone that can survey autonomously, recognize fire and take mitigating action. We successfully designed and created a scalable prototype

OVERVIEW

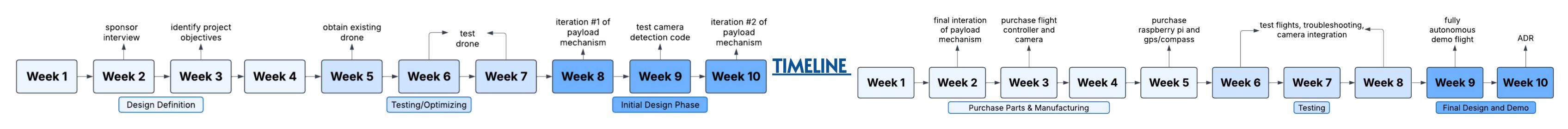
- > User identifies a search area and develops a flight plan for the drone.
- \succ The drone takes off, surveys the area, stopping at each waypoint on the GPS grid.
- \succ If the "fire" is detected, the drone uses a feedback loop to zero in on fire and drop the payload.
- \succ The drone then returns home and lands. It provides GPS coordinates of the fire as well is video.



Payload Drop

ENGINEERING ANALYSIS

- > Analysis of battery life to weight
- > Optimal specs: 600 gram payload with flight time of up to 12 minutes



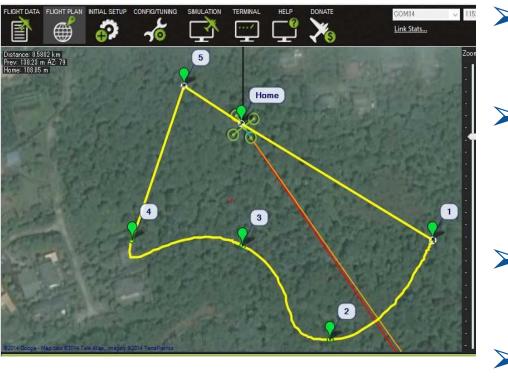
FUTURE IMPROVEMENTS

- Infrared camera to more accurately detect wildfires
- > Object detection using secondary camera and AI modules
- Network/swarm system of multiple drones communicating and working with each other

ENVIRONMENTAL CONCERNS

- > Extreme weather conditions make it difficult or unable to safely operate drone
- Dense trees that limit drone's ability to reachwildfire \succ

Team Fire-Flighters | Wildfire Drone Wildfire Prediction and Mitigation System


FINAL DESIGN

Actual model

CAD model

AUTONOMOUS FLIGHT/SURVEY

Simulation

- SpeedyBee F405 (hardware) & Ardupilot (software) is used
- Commands like waypoint, takeoff, and landing are used to autonomously control drone
- Accurate GPS and compass connection is required
- Visual simulation allows for flight plan to be reviewed before actual flight

WP Radius Loiter Radius Default Alt Absolute Alt Venify Height								y Height 🛛	Add Below	Alt Wam 20					
	Command				T		Lat	Long	Alt	Delete	Up	Down	Grad %	Dist	AZ
1	WAYPOINT	•	0	0	0	0	-35.0407928	117.8277898	100	X	0	4	95.7	104.5	1
2	WAYPOINT		Ó	0	0	0	-35.0406786	117.8260410	100	X	0	0	0.0	159.7	275
3	WAYPOINT	*	0	0	0	0	-35.0417239	117.8251612	100	X	0	•	0.0	141.2	215
4	WAYPOINT	-	0	0	0	0	-35.0428395	117.8259873	100	X	0	Ð	0.0	145.1	149
5	WAYPOINT	*	0	0	D.	0	-35.0427165	117.8274572	100	X	1	Ð	0.0	134.5	84

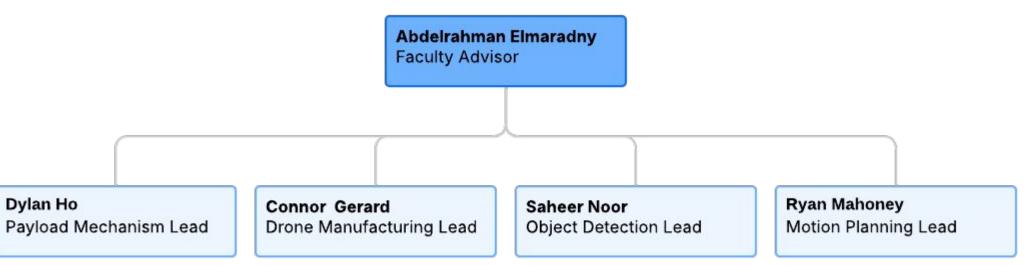
Flight Plan

Department of Mechanical and **Aerospace Engineering**

CAMERA DETECTION

- Raspberry Pi 5 is used
- > Uses RGB scale to detect color from the pixels
- > Creates a mask around solid object of wanted color
- \succ The coordinates from the mask are used for feedback for flight controller and payload servo

Camera Feed



Iteration

PAYLOAD MECHANISM

- > 3D-printed mount to house servo that performs payload drop
- Payload consists of a reusable \succ water balloon
- Payload mechanism is mounted \succ underneath drone and is actuated by Raspberry Pi

ORGANIZATIONAL CHART

ACKNOWLEDGEMENTS

- > Professor Mark Walter , Professor David Copp , and Professor Sherif Hassaan support during Fall 2024 and Winter 2025 quarters.
- Our sponsor Abdelrahman Elmaradny for constant guidance throughout the entire 2 quarter project.