

Summary

Our overall objective is to create an electric powered, aircraft-like drone, designed for endurance and range, with a launcher capable of giving the drone an initial boost.

Key Features

Launcher:

- Launch with elastic band system
- Over 1 meter in length
- ~40° launching angle

Drone:

- Electric powered propeller
- Fixed-wing design
- Landing system

Team Contributions

Responsibility	Team Member	
Team Lead, Wing Design, Drone Assembly	Vincenzo Pizano	
Fuselage Design	Darron Tran	
Landing Gear Design	Aaron Lim	
Propeller Design, Electronic Component Analysis	Jenny Wang	
Design and Assembly of Launcher Chassis	Kristy Wu	
Launcher Leg Design	Tom Nguyen	

Long Range Drone

Member: Vincenzo Pizano, Kristy Wu, Jenny Wang, Aaron Lim, Darron Tran, Tom Nguyen Sponsor: Yun Wang

Results and Progress

- Use of Clark Y for main wing • 187.5mm base chord, 600mm half span
- Use of NACA 0009 smoothed for horizontal and vertical stabilizers
 - horizontal: 93.75 mm chord, 125% thickness, 225mm half span
 - vertical: 93.75mm chord, 150% thickness, 81.2mm height
- Simulation Data performed on different ½ span types
 - decided upon .85 scale taper, 500 chamber

Airfoil ½ Span	.6 taper, 500 chamber, 30 m/s	Straight, 500 chamber, 30 m/s	.85 taper, 500 chamber, 30 m/s
Lift (N)	24.48141322	37.52586897	35.99280793
Drag (N)	0.440295684	0.557551415	0.11307487
Shear stress X (Pa)	0.55989367	1.40660712	0.405062423
Shear stress Z (Pa)	0.00158955	0.016055799	-0.00152989

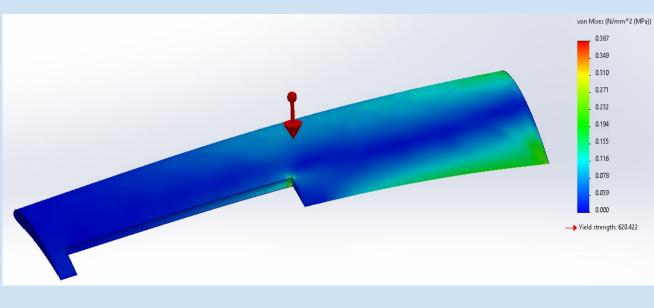


Fig 1. Analysis of Wing

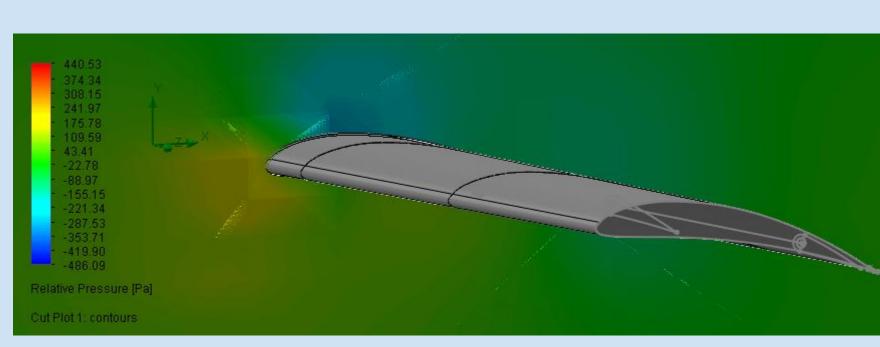
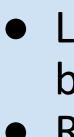



Fig 2. Analysis of Wing

- **Motor:** 45.1A 1300KV lower KV reduce power usage **FC:** 6-30V, 132A
- **Servomotor:** 5V, 2.4A; total of four are used
- Accelerometer: used to measure forces cause by acceleration and gravity to adjust drone's speed and direction, maintaining level flight.
- Gyroscope: used to measure angular velocity and rotational direction of the drone, maintaining stable orientation of the drone

Electronic Component

- **Battery:** 11.1V, 5200mAh; Lithium Polymer
- **ESC:** 11.1V, 80A

Sensor:

Design

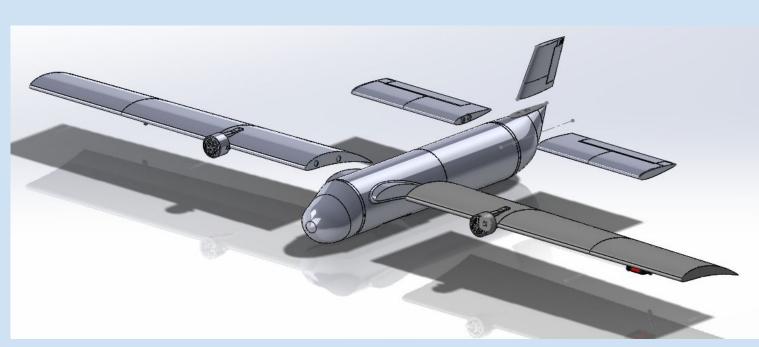


Fig 3. CAD Model of Drone

Future Improvements

- Longer flight duration and travel distance with same battery capacity
- Reduce mass of both launcher and drone

Acknowledgements

• Sponsor/Advisor: Prof. Yun Wang • Prof. Sherif Hassaan, Prof. Mark Walter, Prorf. David Copp