

Project Background

Low earth orbiting spacecraft are subjected to heavy thermal loads due to constantly changing fluxes from the Earth's biggest heat source, the sun. Hardware on such a satellite must operate in a range larger than the ranges of temperatures found on Earth.

For smaller satellites, mechanical hardware may prove too uneconomical and unreliable for use in space. A promising solution for a space shield is to use a variable electrochromic radiator to attract and reflect heat fluxes on these satellites. Current on the market radiators from companies like Ashwin Ushas Corp are expensive to purchase.

Figure 2: Proof Of Concept Assembly Experiment

Goals

Design, manufacture, and test a low cost, variable electrochromic thin film prototype by Summer 2019 for use on Cube, Nano and other budget satellites. Timeline

Objectives

Cost: <\$125 per sq. inch **Operating Conditions:** < 10E-5Pa Weight: ~1.25kg per sq. meter **Emissivity:** Variable from $\varepsilon = 0.2 - 0.8$ Max Power: 3 VDC **Thermal Barrier:** 332-379K

Figure 6: Potentiostat Undergoing Repair and Reprogramming

Fall

- Design Proof of Concept
- Finish Coding and Calibr Potentiostat
- Begin Making Films thro Bath Deposition
- Begin Redox Reaction 1 **Chemical Films**
- Implement Spectromete

Contact Info: Dr. Khalid Rafique (krafique@uci.edu)

Spacecraft Thermal Management 2018 - 2019

Team Leads & Subleads: Trevor Morgan, William Jo, Bryan Nguyen, Thoai Tran, Kristen Wong, Pedro Hernandez, Michael Chung Advisers: Dr. Khalid Rafique, Dr. John LaRue, Dr. Daniel Knight, Allen Kine

/oltage Sourc

Figure 3: Overview of Mass Spectrometer for Film Testing

Figure 4: Simulation of component made for Redox Film Testing

Figure 5: Chemical Slide Undergoing CBD Process

Figures 8 (Left) & 9 (Right): Tungsten Slides Bleached (Left) and Darkened (Right) at 1.75 Volts

	>	Winter		Spring
t Prototype ration of the	•	Manufacture Proof of Concept Prototype	•	Test Proof of Concept Protot
	•	Continue Making Films through CBD	•	Procedures for Chemical Film
ough Chemical	•	Continue Spectrometer Testing	•	Continue Spectrometer Testi
esting of	•	Continue Redox Reaction Testing of Films	•	Continue Redox Reaction Tes Films
U	•	Begin Redesign of Vacuum Chamber	•	Test New Redesign of Vacuu
er to Testing	•	Implement synthesis and annealing fi processes	lm	Chamber

Figures 7 (Left) & 8 (Right): Nickel Slides

Bleached (Left) and Darkened (Right) at

1.5 Volts

Trevor Morgan (tamorgan@uci.edu)

Team Budget

ing

esting of

Im

Last Year's Team

Team Organization

Spacecraft Thermal Management 2018 - 2019