UCI Samueli School of Engineering **Spring Design Review 2019**

VTOL AIRCRAFT DESIGN

Competition Aircraft: Avistar Sport

VTOL Aircraft

Design I	
i.	N
	n
ii.	F
iii.	N
iv.	B
	n
V.	B
	n
vi.	F
	а
vii.	V
viii.	Α
	а
ix.	Α
	V
Х.	C
	g
xi.	N
	е

ENGINEERING APPROACH

• A high wing aircraft configuration allows for a more stable flight • Wing Area: 1448 in² • Wing Loading: ~2 lb/ft² • Wingspan: 90.5 in Motor: SUNNYSKY X5320 Max Static Thrust: 80.41 N

Drop Mechanism for Unmanned Ground Vehicle:

- Requirements:
- Must deliver payload with
- minimum weight of 2 lbs
- Fit a volume of 1 m³
- Max. aircraft weight of 13 lbs Be able to operate within 8 sq niles
- Be able to operate for at least 15 minutes
- Removable parts with ease of access
- Vertical Take-Off/Landing
- All components are still operable after a year
- Able to withstand modes of vibrations caused by motors.
- Operate in 15 knot winds with gusts of up to 20 knots
- Manufacturing costs do not
- exceed \$300

Wing Characteristics a. Airfoil Type: NACA 0012 Figure I. NACA 0012 Airfoil

\mathcal{C}	

Table I. NACA 0012 Parameters Maximum Wing Thickness (t/c)_{MAX} 12% 30% chord (measure from leading edge) Location of Maximum Thickness **Operating Reynolds Number** $\sim 4 \times 10^4$ to

Table II. Wing Parameters

Chord Length	12 inches
Wingspan	39.37 inches
Planform Area	472.44 sq. inches
Aspect Ratio	3.28
Taper Ratio	0%
Sweep	0 degrees
Maximum Wing Thickness	1.44 inches
Location of Maximum Thickness	3.6 inches from the leading edge
Front Wing Incidence	5 degrees
Back Wing Incidence	8.5 degrees
Max L/D	25.7 at 5 degrees

Project Email: uavforge.uci.sdp@gmail.com Follow this project! https://sites.uci.edu/uavforge/

TIMELINE

Spring Quarter Goals:

- Successfully deploy the UGV mid-flight
- Improve autonomous flight capabilities
- Design and manufacture a unique and fully functional Vertical Take-off/Landing (VTOL) aircraft without exceeding the project budget
- Prepare team for transition to new academic year

SPENDING SUMMARY

