SIEMENS Unmanned Autonomous Submarine Team Tyler Terada, Esther Yao, Leo Ma, Sam Fan, Ann Duong

Executive Summary

Challenge/Objective: Underwater exploration is too dangerous for human exploration. A safer alternative is necessary.

Design Solution: A fully autonomous submarine that features:

- Object tracking capabilities
- Efficient underwater navigation (5 DOF)
- Optimized energy usage for extended operations.

Chassis and Thrust Analysis

 $\Sigma F_x = F_{thrust} - F_d = 0 \qquad F_d = \frac{1}{2} \rho C_d v^2 A \quad F_{thrust} = ?$

Frontal Area = $493 mm \times 173 mm = 0.087754 m^2$ $\rho = 1000 kg/m^3 C_{,} = 1.0 (for rectangular prism)$ v = 1.2 m/sSolving for thrust $\Sigma F_x = F_{thrust} - \frac{1}{2}(1000)(1)(1.1)^2(0.087754) = 0$ $F_{thrust} = 6.44 \, kgf$

Given two propellers, each will need 3.22 kgf for max speed of 1.2 m/s

Von Mises lateral motor bracket (7.5 kg force)

Propeller Thrust Analysis

```
\Sigma F_{y} = F_{thrust} + F_{buoyancy} - F_{d} - F_{weight} = 0
 V_{displaced} = V_{shell} + V_{enclosed}
 V_{shell} = \frac{m}{\rho} = \frac{3.8 \, kg}{1250 \, kg/m^3} = 0.00304 \, m^3
V_{enclosed} = \frac{\pi}{4} (0.127)^2 (0.2032) = 0.002584 m^3
V_{displaced} = 0.00304 + 0.002584 = 0.005624m^3
 \rho = 1000 \ kg/m^3 g = 9.81 \ m/s^2
   P_{buoyancy} = \rho g V_{displaced} = (1000)(9.81)(0.005624) = 55.17 N
  F_{weight} = mg
Sub Mass = 4 kg (shell) + 2.48 kg (propellers) + 0.834 kg (batteries)
Sub Mass = 7.314 kg
F_{weight} = 7.314(9.81) = 71.75 N
\Sigma F_y = F_{thrust} + F_{buoyancy} - F_d - F_{weight} = 0
 Assuming zero velocity: F_{j} = 0
Solving for F_{thrust} = F_{weight} - F_{buoyancy} = 71.75 - 55.127 = 16.623 N
For one of three vertical thrusters: F_{thrust} = 3mg = 5.541 N
```

```
m = \frac{5.541}{20} = 0.565 \, kg \, of \, thrust \, required
```

Efficiency	v= 1.2 m/s Thrust (kg)	Voltage range	Current draw	Electrical Power Draw (MIN)	Electrical Power Draw (MAX)	Mechanical Power (MIN) @ 1.2 m/s	Mechanical Power (MAX) @ 1.2 m/s	Min Efficiency	Max Efficiency
Amazon 2.4 kg IPX8 Underwater Thruster Nuhikap	2.5 kg	24 V	11.7	N/A	280.8	N/A	36.8	N/A	13.10
U5 Brushless Thruster (Underwater thrusters)	2.18 - 6.72 kg	12 -24 V	15 - 33 A	180	792	32.1	98.9	17.82	12.49

Parameters	Specifications
Max Depth	1.5 m
Endurance	10 minute operating time
Speed	1.2 m/s max speed
Navigation	INS
Communication	Tethered
	On board 6s Lipo battery
Power Source	6200 mAh
Weight	7.3 kg

Mises (N/mm^2 (MPa))
6.432e+00	
_ 5.789e+00	
_ 5.146e+00	
_ 4.503e+00	
_ 3.859e+00	
_ 3.216e+00	
_ 2.573e+00	
_ 1.930e+00	
_ 1.286e+00	
_ 6.432e-01	
2,720,07	

Hardware Performance

Autonomation: camera -> BlueOS -> program -> x/y coordinates -> error from center of frame -> movement commands -> pixhawk -> submarine

Future Improvements

- Fine tuned propulsion control
- Integrated software for tetherless design
- Improved waterproofing design for ease of use

Acknowledgements

The UAS team would like to thank Shorbagy Mohamed, Kaushal Patel, and the Siemens team for their support towards team efforts toward the project.