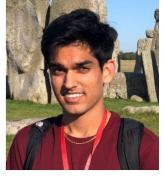
Ford Additive Manufacturing Capstone Design Project

MAE 189 Capstone Design University of California, Irvine April 30, 2021

Our Team


Edward Pedro

Elizabeth Suarez

Omid Souri

Anil Verman

Advisor: Benjamin Dolan Sponsor: Siddharthan Selvasekar

Table of Contents

O Project Definition

Problem statement, overview of the project, our objectives, and research

03 Preliminary Design

CAD models, nesting scenarios, SWOT analysis, simulations, calculations

02

Conceptual Design

Design requirements table, concepts, concept selection process

04

Moving Forward

Gantt chart, what we need to do, timeline, questions and concerns

Project Definition

Problem statement, overview of the project, our objectives, and research

Problem Statement

Conventional manufacturing methods, such as injection molding, can be expensive when it's being used for low volume (< 20,000 units) production. Since tooling is not universal and must be altered to fabricate various parts, traditional manufacturing methods can lead to high upfront tooling costs. However, additive manufacturing, also called 3D printing, provides users a range of advantages that can help reduce costs.

Ford has asked us to redesign an automotive air duct by using multi-jet fusion 3D printing technology for low volume production. To utilize this technology properly, we must abide by the packing density rules and build requirements of the 3D printer that will be used. We will be following the Engineering design process to implement multiple designs that will minimize the unit cost and maintain similar performance to a traditionally manufactured automotive air duct.

• • • • • • • • • • •

Project

- Redesigning an HVAC duct from a Lincoln Navigator using Design for Additive Manufacturing principles
- Using HP Multi-jet 5200 printer
- Materials: PA-11, PA-12, PP, TPU

Objectives

- Provide 3 designs
 - 2 CAD versions of each design: as-printed and deployed
 - Maximize Nesting Efficiency
 - Minimizing Unit Cost
- Business cases for each design along with build nesting scenario
- CAE evaluation of pressure drop difference with new designs
- Engineering report detailing design development and test methodology

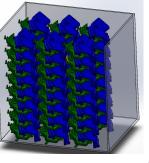
Primary & Secondary

Research

Multi-jet Fusion Printer

- UCI: HP 4200 \rightarrow PA-12
- Ford: HP 5200 \rightarrow PA-12, PA-11, PP, TPU
- Specs:
 - Build Volume: 380 × 284 × 380mm
 - Min. wall thickness: 0.5mm
- Cost & production:
 - Material costs are associated with part volumes
- How it works
 - The printer first deposits a layer of material on the build platform. Fusing agent is applied on the layer of material where particles need to fuse as well as detailing agent. Lastly energy is applied so that the reactions between the agents and material can happen.
- 3D Nesting
 - Ability to pack many parts in build volume
 - Softwares: Netfabb, Materialise, 4D Additive

Existing Solutions

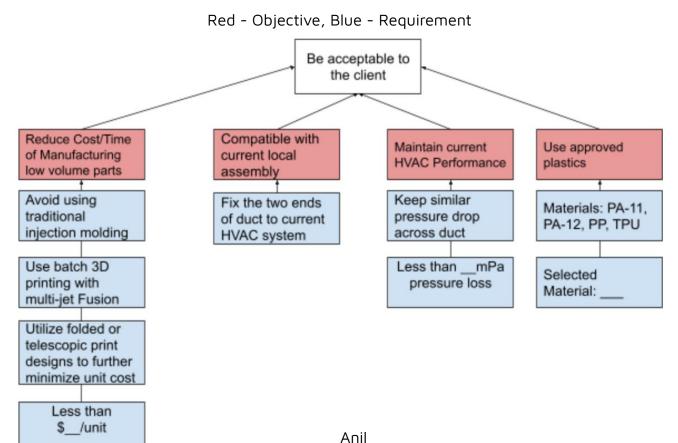

- Current Ford design
- Telescoping design
 - Consider clearance between each "tube" and locking mechanism
- Collapsible design
- Foldable design

More Information

- Estimated Ford Print Costs
 - PA 12: \$750
 - PA 11: \$1000
 - TPU: \$1500
 - PP: \$600 \leftarrow cheapest
- TPU and PP are hard to run in the printers
 - Can warp during printing due to heat and after part is printed during cool down
- PP has more constraints when printing
 - 25 mm distance from the build wall

est un in the printers inting due to hea d during cool dow when printing

Elizabeth


Design Attributes

O-objective, C-constraint, F- function, M-means

Attributes	0	С	F	М
Must have similar pressure drop to current design		X		
Must not have interference in same local assembly as current design		х		
Should reduce the unit cost compared to current design for small volume parts	х			
Could be foldable, telescopic, or collapsible				х
Should be as durable as current design	x			
Should maximize nesting efficiency	x			
Must use one of the following material: PA-12, PA-11, PP, or TPU		х		
Must be compatible with multi-jet fusion printer technology		Х		

Objectives-Requirements Tree

.

.

Conceptual Design

Design Requirement Table

.

11

Level of Importance: 1 (low) and 5 (high)

. . . .

• • • • • • •

Metric No.	Requirement/Metric	Imp.	Units	Marginal Value	Ideal Value
1	Withstand estimated operating temperature range	1	Ŧ	-40 - 150	-40 - 150
2	Within % pressure drop of current design	3	N/A	≤1 0%	0%
3	Maximize number of parts per batch (nesting efficiency)	4	N/A	>71	>100
4	Minimize unit cost compared to injection molding at low volume production (<20,000 units)	4	\$	<\$8.50	<\$8
5	Fits within local assembly with no interference	5	N/A	N/A	N/A

.

Concepts

• • • • • • • • • • •

Name & Picture	Pros	Cons
Snap Fits	 PA 12 - Cheaper material Can easily stack on top of each other Labor after printing only involves placing 2 pieces together 	 May still be bulky Must ensure connections align properly
Book Style	 Labor after printing only involves closing the duct Easier to assemble than snap fits 	 Due to geometry of the duct, closing it would move in an arc path May not pack as much per printing batch due to the hinge connection

.

Concepts

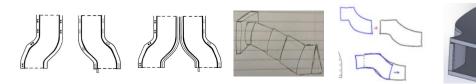
.

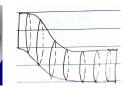
Name & Picture	Pros		Cons	
Telescoping	•	PA-12 - Cheaper material telescopic design is compact Low labor after printing	•	Needs to be split in two pieces because triangular section needs to be attached after printed
Sliding lock	•	Same amount of steps needed after printing to current design Reduces dimensions by getting rid of extruding parts	•	Needs to use flexible material TPU/PP Nesting would have to follow more constraints

.

Concepts

• • • • • • • • • • •


Name & Picture	Pros		Cons	
Separate Wall Ducts	•	Can be compactly nested because all pieces are mostly flat PA-12 - Cheaper material	•	Needs more assembly work after printing finding a secure method to connect all walls
Semi-Rigid Duct	•	Flexible due to TPU which allows for more design freedom	•	TPU is much more expensive(about twice as much as PA-12) TPU harder to print with and can warp

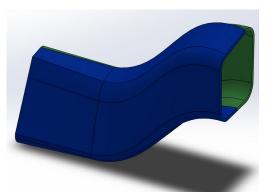

Concept Selection Process

- Used Pugh Matrix to determine the designs that we will go forward with
- Justified scores based on information from pros and cons table

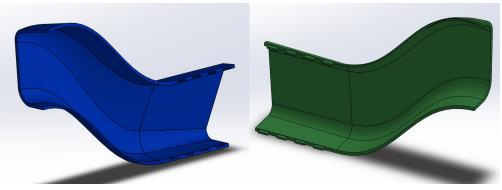
.

	Ford design (reference)	Snap fits	Book style	Telescoping	Sliding lock	Separated wall ducts	Semi-Rigid
Selection Criteria	Relative Score	Relative Score	Relative Score	Relative Score	Relative Score	Relative Score	Relative Score
Nesting Efficiency	S	1	-1	1	-1	1	-1
Material Feasiblity	S	1	1	1	-1	1	-1
Ease of Assembly Post-Print	S	0	1	1	0	-1	1
Durability	S	0	0	0	0	0	0
Smoothness of inner surfaces	S	0	0	-1	0	0	-1
Score	0	2	1	2	-2	1	-2

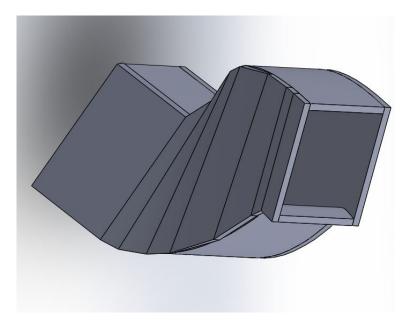
. . . .

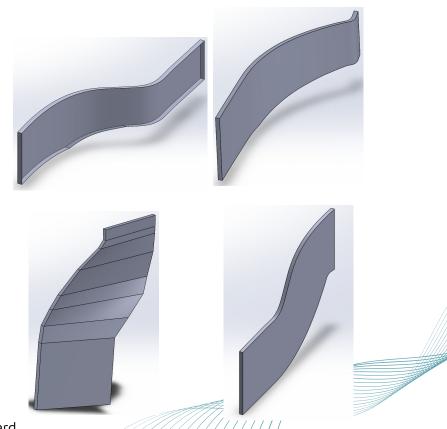

Preliminary Design

Preliminary CAD Models


Snap Fits

• •



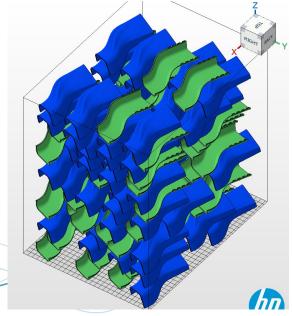


Edward

Preliminary CAD Models

Separate Wall Ducts

Nesting Scenarios


•••••

Snap Fits

• Part interval: 5mm

.

- Packed Height 378.3mm
- Total Parts: 108
- # of sets: 54

Separate Walls

- Part interval: 5mm
- Packed Height 366.9 mm
- Total Parts: 228
- # of sets: 57

Current Business Model

Edward

Conventional Cost Estimates for a 2 piece duct

- \$50,000 in investment costs (tooling, etc.)
- \$6 in part cost (material, cycle cost)

Price per unit equation

 $f(x) = price per unit = (50,000 + 6^*x)/x$


Current Business Models for the Designs:

Snapfits:

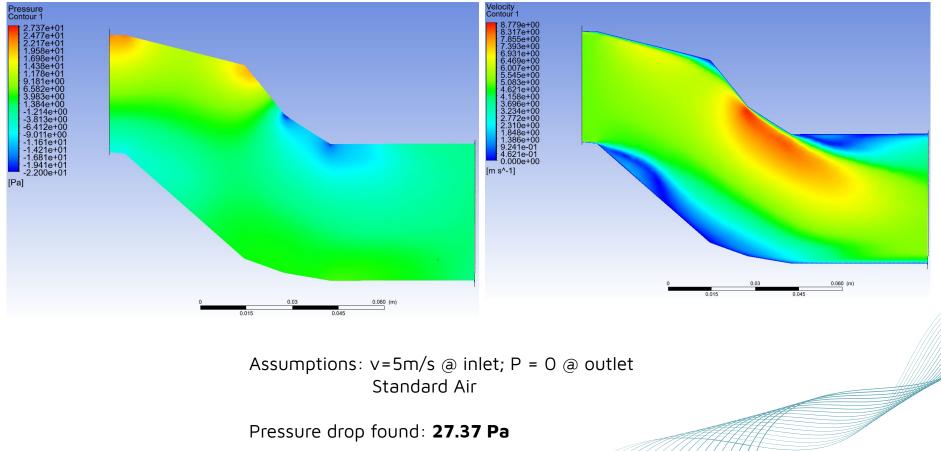
- PA-12: \$13.89/unit

Separated Walls:

- PA-12: \$13.16/unit

SWOT Analysis

.


Using AM methods for low volume production

Strengths	Weaknesses
 Multi-jet printing technology allows for more recyclability No large initial investment cost needed for mold 	 Inconsistent part quality Must adhere to constraints set by the printer which limits nesting efficiency
Opportunities	Threats
Nesting	Only viable at low volume production

.

	Analysis yle Duct
Strengths	Weaknesses
 PA 12 - easier material to work with Can easily stack on top of each other Assembly after printing only involves closing two pieces together 	 Can't pack as much per printing batch due to the hinge connection
Opportunities	Threats
 Multi-jet printing capable of printing live-hinges Seek guidance from experienced advisors at Ford and UCI 	3D printer malfunction could lead to faulty hinge
Edwa	bre

ANSYS Simulation

Anil

Hand Calculations

Minor loss equation: $h_{minor} = \varepsilon(\frac{v^2}{2g})$ Major loss equation: $h_{major} = \lambda LD(\frac{v^2}{2g})$

where ε is minor loss coefficient, λ is friction factor, *L* is length of straight pipe, *D* is diameter of pipe, and *g* is the gravitational constant

Since the duct is only about 125 mm in length, major loss is negligible. However, since there are two 45 degree turns in the duct, minor loss will be significant.

From a minor loss coefficient table, it is found that the minor loss coefficient for a 45 degree bend is equal to 0.2. From the ANSYS flow simulation, the flow speed near the 45 degree bends is about 10 m/s.

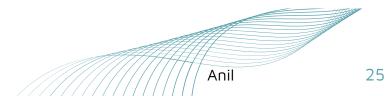
Therefore, the total loss is equal to:

$$h_{total} = \Sigma h_{minor} = \varepsilon_{bend1}(\frac{v^2}{2g}) + \varepsilon_{bend2}(\frac{v^2}{2g}) = 0.2(\frac{10^2}{2g}) + 0.2(\frac{10^2}{2g})$$
$$h_{total} \approx 2 m$$

24

Hand Calculations (cont.)

We convert total head loss to pressure loss using the following equation:


 $P_{loss} = \rho g h_{total}$ where ρ is the density of standard air (1.2 kg/m³), and g is the gravitational constant.

Finally, we get:

$$P_{loss} = \rho g h_{total} = (1.2 \ kg/m^3)(9.8 \ m/s^2)(2m) \approx 24 \ Pa$$

Percent error of hand derived pressure loss versus ANSYS derived pressure loss: % error = $\frac{27.37 Pa - 24 Pa}{27.37 Pa} * 100\% = 12.3\%$

Therefore, we can conclude that the pressure loss across the original Ford duct around 25 Pa, and we can say with higher certainty that the pressure loss is less than 50 Pa.

Moving Forward

Gantt Chart

		13	PHASE ONE						PHASE TWO														Legend	
		PCT OF TASK		W	/EEK				V	VEEK				V	/EEK			WEEK 5					Planned	
TASK TITLE	TASK OWNER	COMPLETE	м	т	W	R	F	м	т	w	R	F	м	т	w	R	F	м	т	w	R	F	1 idiiriod	
Team Organization	Everyone	100%																					In Progress	
Initial Primary & Secondary Research	Everyone	100%																						
Problem Statement	Omid	100%																					Complete	
Design Attributes Table	Anil	100%																					Behind	
Work Breakdown Structure	Edward	100%																					Schedule	
Milestones & Deliverables	Elizabeth	100%																						
Wk 2 Team Status Report	Everyone	100%																						
Ch. 2 Conceptual Design																								
Primary & Secondary Research	Everyone	100%																						
List of major components in design	Everyone	100%																						
Functional Analysis	Everyone	100%																						
Generate multiple design concepts (5-8)	Everyone	100%																						
Wk 3 Team Status Report	Everyone	100%																						
Ch. 2 Preliminary Design																								
Finalize generating concepts	Everyone	100%																						
Choose 3-4 design concepts	Everyone	100%																					I	
Learning Ansys	Anil	100%																					I	
Begin business cases for each design	Edward	100%																						
Wk 4 Team Status Report	Everyone	100%																						
Project Website	Everyone	100%																						
Ch. 2 Preliminary Design																								
Continue business cases																								
Description of fabrication method(s)																								
Initial CAD Model (2 for each)																							l	
Create nesting scenarios																								
Midterm Presentation	Everyone																							г
Midterm Report	Everyone																							E

izabeth 27

Gantt Chart

			PHASE					THR		PHASE FOUR												
		PCT OF TASK		W	/EEK	6			N	/EEK	7			N	/EEK	8			N	/EEK	9	
TASK TITLE	TASK OWNER	COMPLETE	м	т	w	R	F	м	т	w	R	F	М	т	w	R	F	М	т	w	R	F
Ch. 3 Detailed Design																						
Detailed Engineering Analysis and Component Testing																						
Finalize CAD Models																						
CAE evaluation of pressure drop																						
Detailed Bill of Materials (BOM)																						
Engineering Drawings																						
Wk 6 Team Status Report																						
Ch. 3 Detailed Design																						
Prototype Plan																						
Prototype Risk Assessment																						
Update BOM																						
Design Verification							<i>u</i>															
Wk 7 Team Status Report																						
Ch. 4 Prototype Performance																						
Protoype Verification - Submit CAD																						
Description of Final Designs																						
Finalize BOM																						
Safety and Risk Assessment																						
Week 8 Team Status Report																						
Ch. 4 Prototype Performance																						
Redesign & Submit Parts																						
Test components																		UT.				
Design Verification																						
Finalize designs and document																						
Week 9 Team Status Report																						

28

What We Need To Do

- Snap fits & Book style
 - Need to improve snap fits connections
 - Include clips to connect with local assembly
- Separate walls
 - Include clips to connect with local assembly
 - Improve design by including hinges and one snap fit
- Telescoping
 - Include adapters at the ends to fit local assembly
 - Discuss with advisor/sponsor about design
- Verify the design fits with local assembly
- Optimize design for lower pressure drop
- Increase nesting efficiency
 - Manual and automatic packing

Timeline

Initial Prototype

Only need to print certain design features instead of the whole part (snap fits, hinges)

Final Prototype

Submit full parts to print at UCI to advisor

Testing

CAD

Update models: improve snap

fits connections, include clips,

include hinges & snap fits

Verify the design fits with the local assembly, optimize design for lower pressure drop, increase nesting efficiency

Redesign

Note feedback for initial prototype from Advisor, modify CAD to improve design, safety and risk assessment

Elizabeth

Questions and Concerns

- Prototyping budget?
- Any other engineering and economic analysis to take into consideration?
- Making the Design more airtight

Thank you!

Contact

Edward Pedro - ejpedro@uci.edu Omid Souri - osouri@uci.edu Elizabeth Suarez - suareze2@uci.edu Anil Verman - averman@uci.edu

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**