
 1

Abstract—Teacher's Pet is a tool for automated formative

assessment and comprehension analysis. Its design goal is to
improve communication, understanding, and education in
classroom or corporate training settings with a low-cost and
innovative solution leveraging natural language processing (NLP)
algorithms and serverless cloud computing. The results of our
project are the completed product which is composed of the
integration between several resources. We have created
CloudFormation (CFN) templates specifying our distributed
system. Included in these templates are the services such as an
application programming interface (API), databases, queues,
speech-to-text conversion, a container orchestration platform to
handle NLP, and their respective Identity and Access
Management (IAM) permissions. Our embedded system captures
audio and controls the creation of Teacher’s Pet sessions. Our
user interface (UI) built using React with Redux pattern for state
management allows users to answer the automated assessment in
near real time. We have trained a machine learning model to
preform natural language processing and question generation.
Our methods involved the use of Amazon Web Services (AWS)
CFN to enable repeatable deployments across our team
members’ accounts and using GitHub’s organizations so we can
collaborate seamlessly with our integration. Using AWS also
simplified integration between the embedded system, the
transcription service, the image used for machine learning, and
the UI. This allowed for the distributed systems, the UI, the NLP
algorithm and model, and the hardware component to be built in
parallel.

Index Terms – Amazon Web Services, CloudFormation,

Comprehension Analysis, Distributed Systems, Embedded
Systems, Formative Assessment, Natural Language Processing,
Serverless Containers, Question Generation

I. INTRODUCTION

EASEARCH shows that effective teachers are the most
important factor contributing to student achievement [1].

However, the current age of education requires proof to show
true success [2]. Even good teachers face difficulty with
knowing to what extent their students were able to understand
their lectures. A common solution to determine student
comprehension is to give summative assessments that test the
student’s understanding. However, after students have taken a
summative assessment, it is usually too late for a teacher to do
anything if the students failed to understand the material. As
an alternative, formative assessment, which gathers feedback
immediately on whether or not a class of students understood
the material, should become more commonplace as a best

practice in education systems. One of the most frequently
cited works on formative assessment is the research review
conducted by Black and William in 1998 who after
synthesizing over 250 publications concluded that formative
assessment is perhaps the most effective educational practice
when it comes to improving academic achievement [3]. The
research shows that formative assessment has numerous
benefits including teachers achieving greater personal
satisfaction and increased student engagement in learning. The
multiplicity of practices that constitute formative assessment is
limited to methods relying on teachers to put in additional
work to ensure the assessments appropriately match their
lesson plans. Provided this work could be automated and still
cater to a personalized lesson plan, then teachers could still
have the benefits of formative assessment but without the
overhead of extra preparation ahead of time. There are other
disadvantages associated with current methods of formative
assessment such as teacher having to sacrifice time to assess
during the lesson causing them to fear they might not finish it,
or teachers may lack the proper training on how to implement
formative assessment [4]. Our solution is to ameliorate these
difficulties with formative assessment by introducing a
comprehension analysis tool, Teacher’s Pet, for use in
classrooms that will automate formative assessment using
audio capture and natural language processing and give
teachers immediate feedback after a lecture on the extent to
which their students were able to learn each topic.

Teacher’s Pet was developed around the following goals. It
should be able to deliver curated formative assessment in real
time. It should function without requiring the teacher to
sacrifice any of their lesson plan time. It should be compatible
with existing microphone and sound recording technology in a
classroom so that it may be easily setup and integrated with
existing equipment. It should use low cost materials and
serverless technology to reduce the price for consumers. Its
hardware should appear aesthetically pleasing and classroom
friendly for students of all ages. Lastly, the UI should be
simple and easy to access from any electronic device with
internet access.

While it is important to continue understanding student
comprehension through summative assessment, we instead
chose to implement deliberate formative assessment to hold
students accountable for mastering material [2]. Some of the
existing technology-powered formative assessment tools such
as Edulastic analyze data instantly and track student
understanding through delivering questions. Similarly, we

Automated Formative Assessment and Comprehension
Analysis: Teacher’s Pet

Sameer Singh, Andrew Dertli, Monish Ramadoss, Kevin Norgaard, Nik Hammon

R

 2

want to deliver a high standard of organized data visualization
and to provide flexibility to teachers in the subject matter they
can choose from. A limitation of Edulastic is it only contains
material for English and math so far. Teacher’s Pet will be
able to deliver formative assessment that is directly extracted
from the lecture that a speaker has given. This way, the
speaker has the opportunity to improve how they teach a
specific area as well as revisit any topics that were
misunderstood before the session has finished.

Another formative assessment solution such as Nearpod
allows teachers to create original multimedia presentations
that they can embed multiple-choice questions into. When
giving a presentation Nearpod allows teachers to interact with
students and view their responses in real time. It is our goal to
provide engagement, formative assessment, and content to a
classroom the same way that Nearpod does. Unlike Nearpod,
we want to save time and effort for teachers by keeping them
from having to go through the preparing of embedded
questions and have automated questions delivered to their
students in real time. Clip, one activity of a suite from Spiral,
an engaging and easy to use tool that support formative and
summative assessment, allows teachers to create interactive
videos that stop periodically to check understanding.
Similarly, we want to allow all students, even the reluctant
speakers to have a voice.

In order to complete this project, we divided the project into
multiple tiers, each containing services that performs specific
functions and that teammates worked on in parallel. The use of
GitHub Organizations provided us with a way to keep all of
our repositories together and grant us all equal access
privileges as contributors. The use of AWS CFN templates
and GitHub was especially powerful as each member of our
team could deploy stacks to CFN and test the entire system at
their leisure. Together these methods helped us reach our
result, made collaboration seamless, and made finishing within
our timeframe possible. Our goal was twofold, first we
designed and created the infrastructure necessary to run our
project. This was centered around running an NLP algorithm
in a container. We wanted to make sure that we could build a
distributed system that all the subsystem we developed could
easily integrate with. The integration of the individual
subsystems was the second goal. This goal was reflected in the
methods we stuck with during the development of the project.
These methods were to design for a long period of time and
implement gradually, building only what we needed to
establish a proof of concept as well as an infrastructure we
could develop on top of. As a result, our finished project
achieves a fully integrated backend infrastructure powered by
services described in AWS CFN templates, an embedded
system with the capabilities to maintain state and capture
audio, a trained model used to generate questions based on
NLP algorithms, a docker image to run the NLP algorithms,
and a UI styled using cascading style sheets (CSS) for user to
submit responses to.

II. MAIN BODY
In order to build Teacher’s Pet, we divided the functionality

necessary to achieve this product into multiple tiers, each
containing orthogonal services that serve a specific function.

Each member of our team specializes in a different
engineering area and therefore worked to develop their own
subsystem in an individual tier. Tiers contain multiple services
that all communicate with one another in a distributed manner.

A. Materials Used
Teacher’s Pet is comprised of an embedded system and a

distributed cloud system. The hardware components are a
Raspberry Pi, a liquid-crystal display (LCD), two buttons, and
a light-emitting diode (LED). Additionally, a Prusa i3 MK3
was used to print the animal shaped cases out of polylactic
acid, a polymer used for 3D printing. Velcro hold the 3D
printed case together and the electronics are hot glued to
inside. Our distributed cloud system is built using AWS. This
requires the ownership of an AWS account and CFN Template
to specify the services that are run on Amazon’s hardware.
The services used are Dynamo Database (DDB) Tables,
Simple Queue Service (SQS), API Gateway (APIG), AWS
Lambda, EC2 Container Service (ECS), AWS Transcribe,
Virtual Private Cloud (VPC), Simple Storage Service (S3).
B. High-level Hardware and Software System
1) Audio Capture

Speech audio is captured by a USB-microphone in
Advanced Linux Sound Architecture (ALSA). Gstreamer is an
open-source, multimedia framework used to pipeline the audio
components. The input from the microphone is encoded into
Free Lossless Audio Codec (FLAC) format, chunked into 1
MB sequentially named files, and stored in a folder.

2) Embedded Devices

The embedded system involves a raspberry pi and auxiliary
circuitry components including buttons, LED, and an LCD.
The system’s logic is implemented as a state machine on the
raspberry pi that allows the user to preform actions such as
starting, stopping, and creating a Teacher’s Pet session with
the press of a button. The 3D printed case for the device to

Fig. 1. Tier Hierarchy for Teacher’s Pet.

 3

house all the electronics inside is designed to resemble a pig,
giving our project its namesake.

3) Machine Learning Infrastructure

To deploy a machine learning application at scale we used
containerization. ECS is the container orchestration tool that
AWS provides. It runs inside of a private subnet inside a VPC.
Our network configuration that our containers are deployed
includes this VPC along with two subnets, a security group, a
routing table, and a public load balancer. Our ECS compute
instance type is Fargate due to its ability to deploy serverless
container keeping our entire stack off of servers. Our NLP
algorithm is built into an image and stored in the EC2
Container Repository (ECR) for the Fargate Containers to pull
and run it. While writing our own NLP algorithm and model,
some of the existing research done on this topic we will be
drawing inspiration from has shown that a machine learning
model can automatically generate questions from Wikipedia
passages using transformers [5]. In addition, the result of a
neural question generation from text on the SQuAD dataset
shows another method that can produce semantically correct
and diverse questions [6].

This tier is also responsible for tracking when an audio file
has been uploaded through the use of triggering Lambda
functions with an S3 event. To transcribe the text, we used
AWS Transcribe to save us time developing an algorithm that

already exists. Another S3 event triggers a Lambda that
pushes the transcription to a SQS parameter queue and
initiates an ECS task that will start by polling the message
from the queue and conclude by pushing an autonomously
generated question into another SQS.

4) Client-Side Game Mechanics and Polling
The data tier includes a database for storing session

statistics and generated questions. It uses Amazon’s Dynamo
Database, a non-relational database where a simple table can
be deployed serverless. The data tier also includes a FIFO
queue for each session, powered by Amazon SQS, for storing
questions generated by the NLP engine so that they may be
polled by our API and delivered to our frontend application.
The API tier provides backend logic with Amazon’s Lambda
functions, serverless functions triggered by events such as
RESTful calls to Amazon’s API Gateway. All of these
services will be deployed via Amazon CFN, a tool for
deploying Infrastructure as Code. The UI tier includes a
React/Redux application that is hosted through static storage
in an Amazon S3 bucket and communicates with our backend
by making ajax calls to the API Gateway. The game itself
shows listeners questions that they can submit answers for,
and it shows speakers the responses to those questions so they
can get immediate feedback after a session.
C. Methods
 In order to complete our design project, we worked
collaboratively, developed individual systems and integrated
these systems together to communicate end-to-end. Each
teammate designed a different component in the system. Our
team used design documents to collaborate and share
knowledge between group members. Our design documents
were thoroughly detailed discussing the business logic, usage
cases for the system, system architecture, and distributed
failure cases. We spent four to five weeks solely working on
the design phase for our Teacher’s Pet. During
implementation, it was our goal to reach a stable point at
which we could assure the feasibility of our design and
continue to embellish features of each individual component
in parallel by adding to our codebases. This method of
software development is slightly different from building
prototypes because the code that we perform the end-to-end
testing on will not be thrown out, but instead will form the

Fig. 4. UI design for Teacher’s Pet Website. The listeners see
questions on the left and the lecturers see the results on the right.

Fig. 3. Machine Learning Tier Cloud Infrastructure.

Fig. 2. Completed Embedded System
Assembly for Teachers Pet.

 4

foundation for more code to follow. By implementing this
way, we were addressing our concern of having a distributed
system designed by individual group members head-on. Once
we had all built and understood our subsystems, we began to
meet with each other to discuss and implement integration
functionality to the project. Finally, we preformed end-to-end
testing on the fully integrated system by reproducing a typical
use case in which audio is recorded by the embedded system
and a question is generated that appears on our thin-client UI.

D. Results
The use of design documents greatly helped get all team

members to a better understanding of the work that they would
be carrying out as well as the work being done by the rest of
the team. Across all tiers in our project, the results were
significant. In the devices tier, the state machine was
implemented to control when the device would start a session,
when it would start recording the session and when it would
stop. The devices tier transfers audio files it records and
chunks to the machine learning tier with a function for
uploading files to an AWS S3 bucket. This bucket triggers a
lambda function and the execution is identical to what is
described above in machine learning infrastructure. We have
fully integrated the NLP algorithm with the infrastructure by
building a docker image and publishing it to a repository
within ECR, the infrastructure is complete and saved on a
CFN template which is under version control in our team’s
GitHub. Currently, we have developed a thin-client
application that is hosted in an AWS S3. Users can make APIs
calls that poll questions from a SQS queue that is populated
with questions from the NLP engine running in AWS ECS
containers. With the individual subsystems integrated across
all tiers, Teacher’s Pet is capable of recording lectures and
autonomously generating questions for users in a styled UI.
E. Performance

The primary constraint that defines the effectiveness of our
project is timing. When it comes to NLP question generation,
initially we were concerned that the resources allocated by
ECS for each container would be insufficient to handle the
expensive algorithmic computation. When we tested our
system’s performance capabilities rigorously, we gained
insight into the time consumption for our entire backend to
run. The timing of our services is very near real time from the
moment that an audio file is dropped into a S3 on the backend
and by the time the question makes it into the queue. This
shows that the performance of the services we are using will
be sufficient to our needs. The containerized technology takes
additional time to load and run an algorithm over its model but
by launching several containers in parallel we are avoiding
this bottleneck to some extent. The overall computation time
of our backend was determined to be within our needs for the
expected use cases.

III. SUMMARY AND CONCLUSION
Our team worked together through iterative phases of

design and implementation and across multiple tiers of our
software and hardware stack to complete this design project.
By following our procedures, we were all able to gain a clear

understanding of the tasks that each member was working on
and we were enabled to give guidance among each other while
we were designing. The procedure we followed during
development focused on achieving end-to-end system
integration across all of our distributed services before scaling
each service with other features such as styling, distributed
error handling, validation etc. This left us with an
infrastructure that we could continuously expand upon while
we tested that it was meeting our business case, the
autonomous generation of questions. We opted for a longer
design phase of four to five weeks in order to choose a
solution that we hope will be sufficient to deliver our product.

Certain tradeoffs that we made such as using serverless
containers could have had devastating results on the timing of
our end product. Ultimately, we decided to use this in our
project because it allowed us to decisively dive in on
implementation, complete the project within our timeframe,
and will ideally lead to lowering costs. In addition to decisions
that we made due to our bias for action, we also chose to use
technologies that were unfamiliar to us but are relevant in the
field of software engineering. This is another reason we
choose to use serverless containers instead of a dedicated
server, and it greatly expanded our appreciation and
knowledge of the field. The completion of this project has
given each member of our team several new relevant skills in
our fields. These skills include the creating serverless backend
infrastructure in AWS CFN, building machine learning
models, implementing concepts in NLP into an algorithm for
question generation, embedded systems design, building and
styling a React and Redux application, hosting a thin-client
application on an AWS S3, building and deploying docker
images in containers, and using a container orchestration
platform ECS which requires specific network configurations.

IV. ACKNOWLEDGEMENTS
The success of Teacher’s Pet has come from the hard work of
our dedicated team and the advice and guidance of our faculty
advisor. We would like to thank our faculty advisor Dr Sameer
Singh, a professor at the University of California Irvine
working on large-scale and interpretable machine learning
applied to information extraction and NLP. Singh has worked
with our group to share his experiences doing research of NLP
algorithms at scale. He has advised us in what parts of our
project are feasible and has reviewed our design documents to
see if they were logical. The project was self-funded, with the
help of Andrew Dertli, and Kevin Norgaard for providing,
configuring, and assembling the hardware resources. The NLP
research, model design, and model testing were performed by
Monish Ramadoss. The infrastructure and CFN templates
were created by Niklas Hammon. The AWS resources were
provided with minimal cost due to the low billing for the first
year. We are very grateful of each team member as we could
not have completed this project without, our advisor, having
the necessary resources provided through each other, and
having reasonably inexpensive equipment sources.

REFERENCES
[1] Admin, ERN. “Effective Teachers Are the Most Important Factor

Contributing to Student Achievement.” Educational Research Newsletter

 5

and Webinars, 30 Sept. 2003, www.ernweb.com/educational-research-
articles/effective-teachers-are-the-most-important-factor-contributing-to-
student-achievement/.

[2] McCrann, John T. “So How Do You Know They Got It? Showing
Evidence of Learning.” Education Week - Prove It: Math and Education
Policy, 8 Jan. 2016, blogs.edweek.org/teachers/prove-it-math-and-
education-policy/2016/01/how-do-you-know-they-got-it.html.

[3] Andersson, Catarina, and Torulf Palm. “The Impact of Formative
Assessment on Student Achievement: A Study of the Effects of Changes
to Classroom Practice after a Comprehensive Professional Development
Programme.” Learning and Instruction, Pergamon, 26 Dec. 2016,
www.sciencedirect.com/science/article/pii/S0959475216302900.

[4] Sasser, Nesa. “What Are the Advantages & Disadvantages of Formative
Assessment?” Synonym, 27 June 2018

[5] Kriangchaivech, Kettip, and Artit Wangperawong. Question Generation
by Transformers. 2019.

[6] Klein, Tassilo, and Moin Nabi. “Learning to Answer by Learning to Ask:
Getting the Best of GPT-2 and BERT Worlds.” ArXiv.org, 6 Nov. 2019,
arxiv.org/abs/1911.02365v1.

