

Overview

Mission Statement: Single household family requires portable device that uses renewable wind energy to generate power for camping applications.

Project Guidelines: Design a small-scale portable wind turbine capable of providing electricity overnight for the appliances of camping family (2x cell phones, 1x camera battery charger, 1x flashlight, 1x backup battery bank).

Design Criteria

O - objective, C - constraint, F - function, M - mean

Attributes	0	С	F	Μ
Must be Safe				
Should be lightweight and sizeable (less than 10 lbs)				
Should be portable so that it could be 'added to a hiking backpack'				
Should be easily deployed and assembled				
Might be mounted to a surface, such as backpack or tent				
Must be durable enough to withstand wind conditions				
Should collect wind power automatedly				
Should charge to specific capacity within a time span (8 hours)				
Should charge 5 appliances at once				
Must be cost-effective (budget of \$750)				
Should be easily manufactured				

References and Acknowledgements

Our team would like to thank our team sponsor: Mahmoud Abdelgalil for their expertise and guidance.

References:

[1] "California Average Wind Speed City Rank." USA.com

- [2] "Wind Turbine Calculator" Omni Calculator
- [3] "Battery Bank Size Calculations." Leading Edge
- [4] "How do you choose a power bank with the right capacity?" Cool Blue

[5] "How to Choose the Right Size Generator." Consumer Reports

[6] "The Complete Guide to Camera Batteries (Part One)." Wolfcrow

Turbine Blade Shafts: Drag-based, holds fabric (3x)

> **Generator Shaft:** Turns the generator (1x)

Power Distributor: Charges appliances (1x)

Existing design: Supports the generation of ~1000RPM @ 10mph winds. 17" DIA x 8" H The RPM, accompanied by the 1:42 gear ratio, translates to the necessary voltage needed to power the camping appliances.

Oversight: This requires massive torque. Necessity for a 10ft x 5ft turbine blade. Needs to be addressed.

Turbine Assembly Goal: 1000 RPM in 10 MPH winds In these conditions: Produce 13.2W and 16V

Components: Generator: 13V input at max 2500 rpm

Power Distributor: Distributes 110V AC and 5V DC outputs.

Power Bank: 24000mAh/88.8Wh. 15V input.

Small Scale Wind Turbine Sean St. Pierre, Wezam Wilfred Paully-Umeh, Bryant Ly, Henry Xing Zhou, Randy Nguyen

MAE 189 Capstone Design: Team 17, SCWT Design Sponsored by Mahmoud Abdelgalil

Solution: Small-Scale Portable Wind Turbine

Engineering Analysis

RPM VS WIND SPEED

Production Lead: Shuo Xing Henry Zhou - Formation of expected project guidelines and designing the CAD Models.

Hardware Performance

SHOWCASING **GENERATOR WILL PRODUCE 18.2W** @ 2500 RPM

POWER DISTRIBUTING TO VARIOUS DEVICES

WIND TURBINE PROTOTYPE

PICTURE OF DISASSEMBLED **TURBINE BLADES**

Team Contribution

Project Manager: Sean St. Pierre - Overseeing project solution brainstorm and contributed heavily to prototype formation, manufacturing, and assembly.

Project Specialist: Randy Nguyen - Completion of thorough website design and focus on document formatting.

Software Lead: Wezam Paully-Umeh - Data analyst for quantitative data. Ensured design functions met required power and current generation values.

Hardware Lead: Bryant Ly - Design brainstorm and confirmation of compliance in requirements.

Future Recommendations

Appropriate Materials

Body - Thermoplastics, Lightweight Metal Blade - Nylon Fabric

Horizontal Axis Wind Turbine (HAWT)

Despite design complexity, HAWT can be portable and compact. Performs better (efficiency, minimizing losses)

Collapsible Properties

Complementary to HAWT, easy assembly, portability, stability.

Engineering Analysis Oversight

Necessity for massive torque pushes us to:

Search for more effective blade shape, generator with less starting minimum torque, or lose the gears.