

MAE 189 Capstone Design Team 3: Gonk Walker

	Con	<i>kWa</i>	IK	
		E	Ch	
	E	3		
13			113	
	Ject	·ЛС	,0	/

<u>Team Members:</u> Tom Nguyen Jonathan Chavez Connor Linklater Qiyuan Lu

UCI Samueli **Overview and Requirements** School of Engineering

Problem Definition: A steerable mechanical walker consisting of one drive motor each side.

Design Attributes/Requirements/Objectives

- Speed > 1.5 fps Turning radius < 3 ft
- Weight < 7 lbs
- Remote control of speed, forward, reverse, left and right
- DIY manufacture
- Arduino Uno
- Tank Steering Minimal Vertical oscillation < 1"
- Option for autonomous navigation

Reference design for a steerable walker developed by Chenhao of Sustech University.

Tom Nguyen

Design Decision 1: Theme

UCI Samueli School of Engineering

Jonathan Chavez

Design Decision 2: Drive Motors

Gear Motor

- High Torque at low RPM ٠
- Easy to control Able to control: ٠
- - Speed Direction

Stepper Motor

- High Torque at low RPM •
- Easy to control Able to control:
- - Speed.
 - Direction Acceleration

 - Distance

UCI Samueli

School of Engineering

Jonathan Chavez

Design Decision 3: Leg Packaging

Old Leg design

- Layering of leg links with ٠
- spacers required for clearance Layers and spaces extends the width of the leg
- Support forces create ٠ cantilever bending on chassis connection

New Leg design

- Double shear connection place • loads at center of the links
- Reduces the number of spacers • and the width of the leg
- Keeps support forces near chassis • connection.

UCI Samueli

School of Engineering

Qiyuan Lu

Design Decision 4: Driveline Packaging

Stepper Motor Driveline Prototype A

14 Tooth Gear: Added to create space for stepper Motors which are larger than the gear motors

Stepper Motor Driveline Prototype B

48 Tooth Gear connected to the rotating leg mechanism creating a 1:1.33 gear ratio

UCI Samueli

School of Engineering

Connor Linklater

Design Decision 5: Wiring

Prototype B

Prototype A

Connor Linklater

Arduino Code

Control Functions

Setup Code

#include <math.h>

sefice DD_PUL2 // Pulse Pin (sometimes called a step pin) sefice DD_PUL5 // Direction Pin sefice DD_PUL5 // Direction Pin sefice DD_PUL5 // Direction Pin sefice DD_PUL5 // Pulse Pin (sometimes called a step pin) sefice DD_PUL5 // Control Pints sefice DD_PUL5 // Control Pints // Steps per resolution of wy motor/driver combo // Steps per resolution of wy motor/driver int ktor2. int ktor2. int k= 13; int k = 2300; //Time interval between steps in microseconds

float leftStepCourt - 0; //Step count variable keeping track of how many steps have been taken for each motor float leftStepCourt = 0; float leftStepCourt = 0; float leftStepCourt = 0;

unsigned long previousMotoriTime = micros(); //Time variable of when the motor stepped last
unsigned long previousMotor2Time = micros();

char BTvar = '0'; // character variable

bool B_executed = false; bool X_executed = false;

//SETUI

Qiyuan Lu

void setup() {
 //start serial to read both leftdist and right dist, and for the MM-10 BT module
 pinMode(PUL_PIN, OUTPUT);
 //LeftMotor Output pins
 pinMode(PUL_PIN, OUTPUT);
 //Right Motor Pins
 pinMode(PUL_PIN, OUTPUT);
 //Right Motor Pins
 pinMode(PUL_PIN, OUTPUT);
 //Right Motor Pins
 pinMode(enable, OUTPUT);
 digitalWrite(OIR_PIN, UND);
 //Direction outputs required for forward movement
 digitalWrite(OIR_PIN, HIGH);
 digitalWrite(OIR_PIN, HIGH);
 serial.begin(LiS200);
 //Direction outputs required for forward movement
 digitalWrite(OIR_PIN, HIGH);
 //Direction outputs
 //Direction outputs
 //Direction outputs
 //Direction outputs
 //Direction outputs
 //Direction
 //Directi

Loop Code

if (BTvar == 'B' && !B_executed) { //speed up
s = constrain(s - 100, 300, 2000);
B_executed = true;
BTvar = 'F';

if (BTvar != 'B') {
 B_executed = false;

if (BTvar == 'X' && !X_executed) { //slow down
s = constrain(s + 100, 300, 2000);
X_executed = true;
BTvar = 'F';

if (BTvar != 'X') {
 X_executed = false;

if (BTvar == 'S') {
 digitalWrite(enable, LOW);
 Serial.println("System Unlocked");
 /*
 Reset();
 BTvar = '0';*/

if (BTvar == 'C') {
 digitalWrite(enable, HIGH);
 Serial.println("System Locked");

if (BTvar == 'F') {
 Forward();
 Forward();
 if (BTvar == 'L') {
 Left();
 if (BTvar == 'R') {
 Right();
 }
 if (BTvar == 'T') {
 Reverse();
 }
 if (BTvar == 'A') {
 TurnAroundR();
 }
 if (BTvar == 'A') {
 TurnAroundL();
 }
}

Motor2Interval = s: void Left() { digitalWrite(DIR PIN, LOW); digitalWrite(DIR_PIN2, HIGH); k = 1; Motor1Interval = 2 * s: Motor2Interval = s; void Right() { digitalWrite(DIR PIN, LOW); digitalWrite(DIR_PIN2, HIGH); k = 1; Motor1Interval = s; Motor2Interval = 2 * s; void Reverse() { digitalWrite(DIR PIN, HIGH); digitalWrite(DIR PIN2, LOW); k = 1; Motor1Interval = s;

Motor2Interval = s;
}
void TurnAroundR() {

void Forward() {

Motor1Interval = s;

k = 1;

digitalWrite(DIR_PIN, LOW);

digitalWrite(DIR PIN2, HIGH);

digitalWrite(DIR_PIN, LOW); digitalWrite(DIR_PIN2, LOW); k = -1; MotoriInterval = s; Motor2Interval = 2 * s;

void TurnAroundL() {
 digitalWrite(DIR_PIN, HIGH);
 digitalWrite(DIR_PIN2, HIGH);
 k = -1;
 MotoriInterval = s;
 Motor2Interval = 2 * s;
}

Controller Interface and Logic

Х

Х

Digital Prototype: Motion Analysis UCI Samueli School of Engineering

🤛 Walking Forward

Turning Left

Tom Nguyen

Digital Prototype A

UCI Samueli School of Engineering

Overall Dimensions: 10 ¹/₂" x 7 ¹/₃" x 9" END. ~

Digital Prototype B

Mass of ~4.83 lbs

Overall Dimensions: 10 ¹/₂" x 7 ¹/₃" x 9"

Final Design

UCI Samueli School of Engineering

Mass of 4.463 lbs

Overall Dimensions:

$$10\frac{3}{8}$$
" × $7\frac{5}{16}$ " × $9\frac{1}{4}$ "

Jonathan Chavez

Final Design

Verification of Requirements

Speed > 1.5 fps		
Turning radius < 3ft		
Weight < 7 lbs		
Tank Steering		
Minimal Vertical Oscillation < 1"		
Remote control controlling speed and direction of walker		
Uses Arduino Uno		
DIY Manufacturing		

Motion Analysis Speed of Final Design

Oscillation of CG while walking of Final Design

Connor Linklater

Qiyuan Lu

Final Design Performance Review

Validations of Requirements

- Weight of assembly recorded as 4 lbs 7.2 oz
- Top speed recorded at 1.1 fps
 - Time to walk 5 feet was 4.64 sec
- Smallest diameter it can turn at top speed approximately 1.5 ft

Risk Assessment

- Assessment to find highest RPM without tipping
 - Found to be 250 rpm due to insufficient torque from motor at that speed

Closing Statements

Questions and concerns:

- What could be done to make the walker faster?
- Would more durable materials make it too heavy?
- What is the actual difference between using gear motors vs stepper motors?
- What is the physical size limit of this walker with available technology?

Recommendations for the Future:

- Different stepper motor drivers that outputs more current
- Metallic/acrylic leg mechanism for more durability and reliability
- Check and verify dimensions carefully before manufacturing, prevent redundancy
- Implementation of sensors that would allow for autonomous control

Tom Nguyen

Demonstration of the Hardware

UCI Samueli School of Engineering

Thank You Any questions?