

Final Presentation

Problem Definition

Our Purpose:

- The project will meet the needs of residents that will be living in Accessory Dwelling Unit
- Meet the requirements of the OCC Fair Sustainability Decathlon

The following problems are to be addressed:

- The amount of water that is wasted waiting for it to be heated
- Creating a reduction in the amount of energy that is spent on heating the water
- Affordability of the system (cost in the long run)
- If possible, try to make the water arrive at the faucet more quickly as a way of water conservation

Design Attributes and Requirements

Attributes

- Sustainable
 - Water efficient
 - Energy Efficient
- Affordable
- Low maintenance
- Long life
- Easy to install and use
- Only shower and sinks will need hot water
 - Laundry & dishwasher will create their own hot water

Requirements

- No combustion
- ADU tank regulations (ie, standing tanks cannot be openly outside)
- Roof should support 265-926 lbs if a roof tank is installed; shed should be 10 ft x 10 ft if a heat pump tank is installed
- Off the shelf parts
- Provide enough hot water for a 4 person household size
- Meets minimum temperature of 120
 °F and avoids scalding

Chiara

Key Design Decisions and Justification

- Hot Water Capacity
 - For 3 to 4 people: 50-60 gallons
- Hot Water Outlets
 - Kitchen sink
 - Hot water needed for proper washing of dishes (cdc.gov)
 - Washer/Laundry
 - Hot water not needed to wash clothes
 - For food and medicine fields, washer should have sanitize setting to internally heat water
- Cost Analysis
 - Initial cost
 - Hourly cost to run
 - Estimated cost per year
 - Estimated with temperature conditions and/or average household use of 5 hours a day

Everything Considered Thus Far/Existing Solutions

- Tankless
 - Not sustainable, takes up a lot of electrical power
- Recirculation
 - Constantly running, made more surface area for heat to escape
- Active vs Passive Solar Tank
- Electric vs Heat pump
- Evacuated Tubes vs Flat Plates
- POU
- DWHR

Chiara

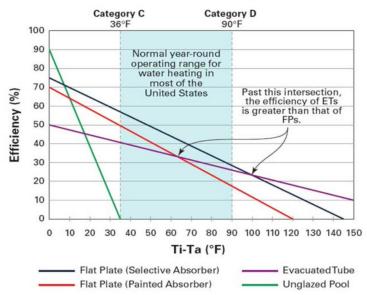
Key Components and Rationale

• Electric vs Heat Pump Back Up:

- Accounts for the hot water that the Passive Solar Tank cannot provide in winter(Nov-Mar)
- Heat pumps have a higher first hour rating (how much hot water you get in the first hour of use) compared to electric tank
 - For example, 50 gallon Rheem electric tank provides 63 gallons of hot water and Rheem heat pump electric tank provides 65 gallons
- Heat pumps have a lower estimated yearly energy cost
 - \$104/yr for electric heat pump tank vs \$424/yr for electric tank
- Heat pumps have a lower yearly energy use
 - 855 kWh for electric heat pump tank vs 3531 kWh for electric tank

Heat Pump Electric Tank:

Electric Tank:

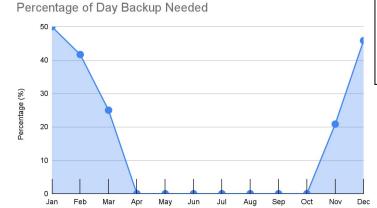


Key Components and Rationale

Evacuated Tubes vs Flat Plates:

- Evacuated Tubes heat water quickly than Flat Plates
- Evacuated Tubes work better in cloudy and rainy days because they can absorb sunlight efficiently from a wide range of directions due to their shape while flat plate collectors are more sensitive to the incoming radiation.
- Installation of flat plate collectors is difficult. Evacuated Tubes are lightweight individual tubes which are easier to assemble.
- If an Evacuated Tube gets damaged, individual tubes can be replaced but if a flat plate collector gets damaged, whole plate needs to be replaced.
- Flat Plates heat water up to 180°F while Evacuated Tubes can heat upto 250°F so Evacuated Tubes can overheat but the overheating can be prevented using a controller and oversizing the tank.

Mahnoor

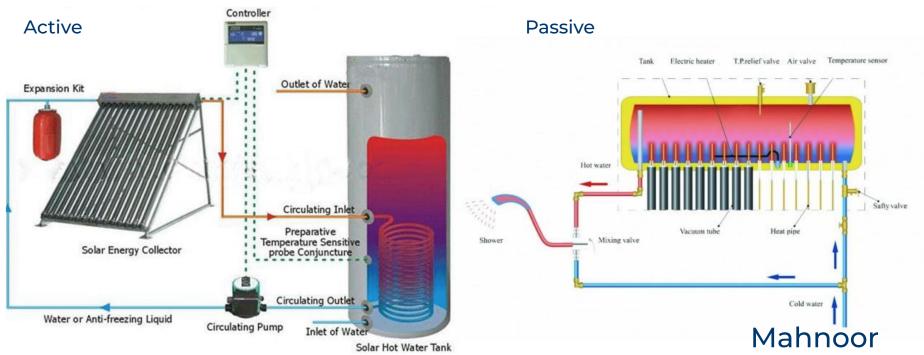

Key Components and Rationale

• Passive Solar Tank:

- Heat water(120 °F or more) to reduce risk of bacterial growth
- Can reliably provide 120 °F (or more) water for a large majority of the year(Apr-Oct)

• Temperature Analysis:

- Local weather data and estimated backup needs with solar systems
- ΔT of +60°F


	Ambient Temperature			Solar Water Output Temperature		
Month	High	Average	Low	High	Average	Low
Jan	67.00	57.00	48.00	143.12	99.52	60.28
Feb	67.00	58.00	50.00	143.12	103.88	69
Mar	69.00	59.00	52.00	151.84	108.24	77.72
Apr	71.00	62.00	54.00	160.56	121.32	86.44
May	73.00	64.00	57.00	169.28	130.04	99.52
Jun	75.00	67.00	61.00	178	143.12	116.96
Jul	80.00	71.00	65.00	199.8	160.56	134.4
Aug	81.00	72.00	65.00	204.16	164.92	134.4
Sep	80.00	71.00	64.00	199.8	160.56	130.04
Oct	77.00	67.00	59.00	186.72	143.12	108.24
Nov	71.00	61.00	52.00	160.56	116.96	77.72
Dec	67.00	56.00	48.00	143.12	95.16	60.28

Active VS Passive Schematics

Instant Hot Water - POU

Points of Use Heaters:

- Provides hot water instantly to the outlets to address waiting for Ο hot water and reduce water waste
- Can set a temperature limit to reduce water waste with times to 0 reheat
- Can heat up to 60 °F temperature difference 0
 - Shown in temperature analysis to be minimum needed for solar systems

Bathrooms (1 each)

- ECO MINI 6 0
- 1.4 kW, 120 V, 12 A Ο
- \$230 Ο
- \$0.45 /hr 0

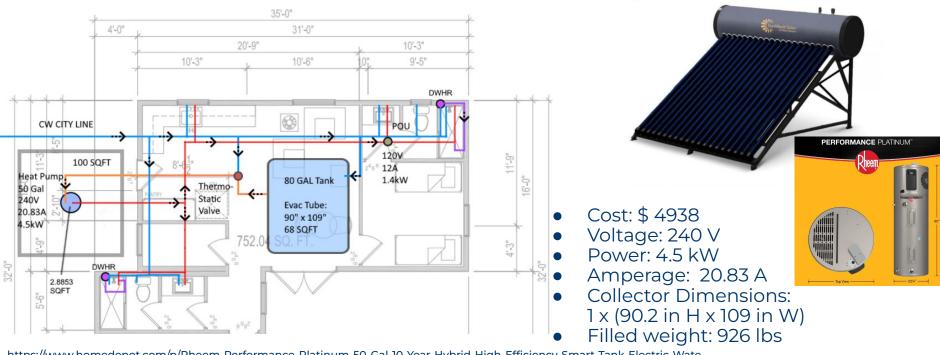
- **Kitchen**
 - Rheem 6 0
 - 6 kW, 220 V, 25 A Ο
 - \$220 Ο
 - \$1.92 /hr Ο
 - 2 GPM flow 0

Water Efficiency and Safety- DWHR and Thermostatic Valve

Drain Water Heat Recovery Unit:

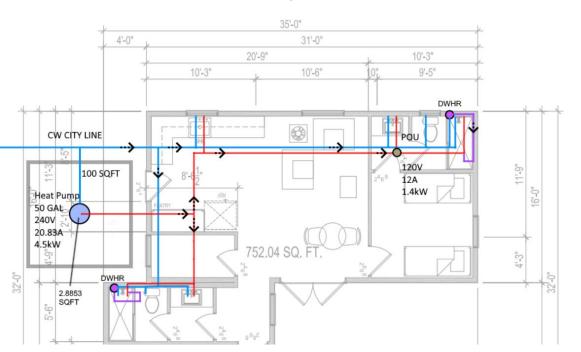
- A completely passive system that requires no maintenance
- Can recover heat energy and return it back to the water heater so that more energy is not expended to heat otherwise cold water(up to 60% of the heat energy can be recovered)
- <u>Thermostatic Valve</u>
 - ASSE 1017 Valve's purpose is to regular the temperature of water coming from the solar tank(could reach 204°F) so it serves as a safety measure within our systems to provide anti-scald protection for the residents

- Pre-Heated Water - Drain Water



ASSE 1017 Valve, Hot and Cold Water Mix and Tempered water is released in the bottom

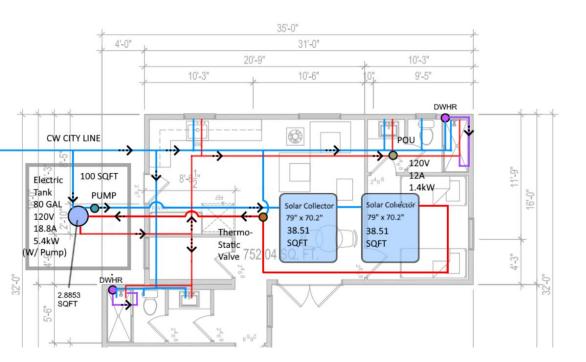
Detailed Design/BOM: Passive Solar with Heat Pump


https://www.homedepot.com/p/Rheem-Performance-Platinum-50-Gal-10-Year-Hybrid-High-Efficiency-Smart-Tank-Electric-Wate r-Heater-XE50T10H45U0/312742081

DIY ThermoPower™ VTS 30 Tube / 80G Thermosvphon Solar Hot Water Kit for Hot Water - SunMaxx Solar

Miguel

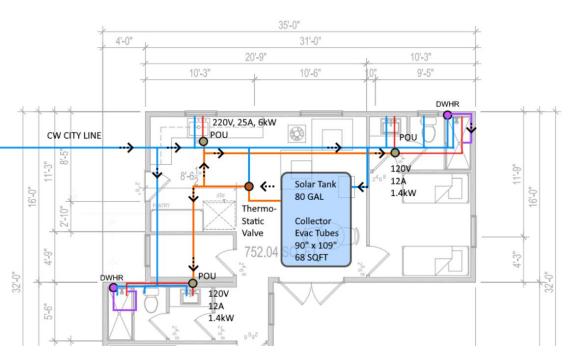
Detailed Design/BOM: Heat Pump


- Total Cost: \$2828
- Voltage: 240 V
- Amperage: 20.83
- Dimensions: 48 in H, 22.25 in W, 22.25 in D, 50 gallons

Chiara

Detailed Design/BOM: Direct Solar with Electric

- Cost: \$5400
- Voltage: 120 V
- Power: 5400 W
- Amperage: 18.8 A
- Tank Dimensions: 22.5in x 69in (D x H)
- Collector Dimensions: 2 x (79 in H x 70.2 in W)


Mahnoor

https://www.sunmaxxsolar.com/product/heliomaxx-80g-glvcol-solar-hot-water-evacuated-tube-collector-kit/

Detailed Design/BOM: Passive Solar

- Cost: \$3,239.94
- Voltage: N/A
- Amperage: N/A
- Dimensions: 90 in H x 109 in W

Comparison/Analysis

		Passive + Heat Pump	Heat Pump	Direct Solar + Electric	Passive Solar
	Cost*	\$6,068	\$2,828	\$6,529	\$4,829
-	Power (kW)**	N/A + 4.5 + 1.44	4.5 + 1.44	4.5 + 1.44	N/A + 1.44 + 6
	Storage	Shed + Roof	Shed	Shed + Roof	Roof
	Total POU	1 - ECOMINI6	1 - ECOMINI6	1 - ECOMINI6	2 - ECOMINI6 1 - RHEEM 6
	Hourly Cost***	\$1.90	\$1.90	\$1.90	\$3.82
	Yearly Cost****	\$956.86	\$2628	\$956.86	\$902.31
System	g POU and DWHR cost + POU	**Yearly Cost estimated with 1/2 backup needs per day	****Yearly Cost estimated with 5 hrs a day of hot water use	****Yearly Cost estimated with 1/2 backup needs per Maka day	

***Everything on for 1 hour

Which Design to Choose?

- Passive Solar Water System
 - Temperature data in Irvine is suitable for solar systems
 - Estimated yearly cost is lowest
 - Affordable system
 - No additional planar space required
 - Spatial consideration to maximize house layout capacity
 - Has minimal electrical usage
 - No pump or electric components in tank
 - Only needs POUs when Solar temperature not sufficient
 - Only 33.3% of year needed for more than 25% of daily water usage

Risks/Concerns

- **Risks**
 - Will the roof support the tank on the roof? Ο
 - Cost of installation varies, it may be high depending on the Ο vendor.
 - Passive relies on the weather/the sun
 - If there's a string of cloudy days, the system will rely on POU, which will be costly.
- Concerns
 - High upfront cost for the model. Ο
 - Architecture may have a problem with the tank on the roof. Ο
 - Materials. \bigcirc
 - Regular maintenance. Ο

Future Recommendations

- To find a way to implement DWHR into the passive system
 - We want to utilize the heat from the drain water
- Perhaps collaborate with the sustainability team and find appliances that will limit hot water flow once 120 °F is reached
 - It will help with the hot water consumption/waste
- Strong steel makes more protection during years.(the quality make sense)
- Unsure what to do, don't hesitate to ask a professional.