

Problem Overview

Problem:

Battery technology is a current limitation of AUVs

- Often requires manual battery swaps
- Limits operation time

Objective:

- Engineer an AUV that can autonomously navigate to a homing station / recharging station
- Implement the wireless recharging technology
- Maintain small scale and make AUV as small as possible

Our Solution:

- Ultra Wide Band signal detection
- Mounting mechanism to recharge

Existing Solutions

Industry AUV

- Harvard's S.O.R.S.G. BlueSwarm Robot
- MIT's Sofi
- CoCo Ro

2022 Winter Design

- Uses a pump to remain neutrally buoyant
- Utilizes a magnetic navigation system
- Electromagnetic homing station

Remorus **Design Solution**

• Made robot positively buoyant to take out the pump in previous design • Equation is to calculate the mass needed to obtain an acceleration of $.01 \text{ m}^2/\text{s}$ • Use two propellers pointing up to control the negative z axis movement

Acknowledgments

Our team would like to give a special thank you to Dr. Camilo Velez Cuervo and Dr. Efrain Mendez for their help and guidance with this project

Remorus: Autonomous Underwater Vehicle Research at UC Irvine

Abhijith Jose, Andrew McMillian, Jason Messner, John Kusto, Jonathan Kim Henry Samueli School of Engineering at UC Irvine Sponsored by Dr. Camilo Velez Cuervo

Introduction

- Positive Buoyancy added 2 z axis motors
- UWB Triangulation
- Recharge Technology
- Propulsion: DC Motor
- Chassis Waterproof, with silicon, streamline body, fins for balance

repair

Conclusions

- Next Quarter Improvements:
- More anchors for better triangulation
- More robust propulsion system
- Functional wireless charging
- Impact on Society
- Help advance the microrobot technology
- Possible use in microrobots for the body and non-intrusive