

Executive Summary

This project focuses on the development of a jellyfish robot that replicates the natural propulsion mechanisms of a jellyfish with the use of linkages. Existing jellyfish robots tend to be very bulky, require a lot of energy to move, and are hard to maneuver, making them unrealistic in real-world applications. To address these limitations, this project will analyze past designs and develop an improved model that prioritizes efficient propulsion. The design process includes modeling and dynamic analysis of the linkage system to optimize swimming efficiency. Dynamic analysis will be evaluated using SolidWorks simulations, and experimental tests will be conducted to compare the robot's propulsion against a biological jellyfish.

Proof of Concept

Chassis

- -Water resistant
- Houses electronics

Crank shaft

- Converts rotary motion into linear motion
- Efficient way of powering multiple legs

Legs

- Acts as the tentacles of the jellyfish

Engineering Analysis - Legs

Brief: Legs must have optimal flex for efficient propulsion

Requirements: Legs shall have 25 - 40 degrees of deflection during peak velocity

- <20 degrees: minimal energy storage / weak propulsion
- >40 degrees: strains material / long recovery

Engineering Analysis - Chassis

Brief: Chassis must house / protect electronics from water

Requirements: Chassis shall withstand pressures at 2m water depth

Materials: Fiberglass Rod (3mm OD) / Rigid PVC **Fixtures:** Two Fixed Hinges speed of 0.56 m/s

Fixtures: Fixed base

Results: Max Stress: 0.4 MPa

> Yield Stress: 600 MPa

> Deformation: 0.083mm

JELLYFISHBOT

Fadeel Attaullah, Daniel Ho Yu Chen, Cristine De La Cruz, May Maung, Khine Thazin Myint, Warner Wu Sponsored by Dr. John Michael McCarthy and Dr. Sasha Voloshina

Thanks to Professor John Michael Mc Professor Sasha Voloshina, Professor Copp, Professor Mark Walter, and Abdelrahman Elmaradny.

Design Process Timeline

Week 5-7	Week 8	Week 9-10	Spring Quarter	
esign and Simulation yze three different ges to choose which is best suited for himicry. Generate a plete detailed CAD el of all subsystems integrate it the first otype.	Subsystem Testing Generate a complete parts list and create testing plans for each subsystem. Carry out these testing plans to verify the limits of each subsystem and to check for areas of improvement.	Assembly and Testing Fully integrate subsystems into one final prototype (Prototype A). Begin to test the movement of this prototype to ensure it meets the performance requirements.	Improvements According to the first quarter, work on future improvements to create an improved second prototype (Prototype B).	
ON Linkage Subsystem nkages/Legs (fiberglass) addles (PVC) Crank Shaft (SS tubes) Mount (SS tubes)	ttery Arduino when to power/ strue Motor Module the outp mo	decides o decides o go into recovery oke Driver controls out to the otor Motor d crank Motor d crank	gram ft drives egs Swimming jellyfish rives the shaft	5
but the driver he the	 Designing heat in the overheatin Integration with the ac Improve the stable and 	 Designing a system to efficiently dissipate heat in the chassis to prevent the overheating of the electrical components Integration of navigation and maneuverability with the addition of a magnetometer Improve the buoyancy of the robot to ensure stable and efficient swimming 		
5		Reference	es	
Carthy, David	 AquaJellie Junzhi Yu 	<u>es by Festo</u> Research Article		

- IEEE Robojelly