
 1

Abstract— In this paper, we propose an effective and affordable

system that allows fully paralyzed patients to securely pilot a

radio-frequency controlled car with nothing but their eye-gaze.

The aim is to create a system accurate enough to help eliminate the

dependence paralyzed patients have on others for their personal

mobility. Our approach is rooted on the OpenCV framework for

fast and reliable eye-gaze detection algorithms, an economical

2.4Ghz Antenna for unhindered communications, and a

lightweight ATmega328p for motor controls. To date, our team

has managed to build a prototype able to track eye-gaze and pilot

a car with approximately 75% accuracy.

Index Terms— OpenCV, eye-gaze, paralysis, video-processing

I. INTRODUCTION

T is estimated that every year, there are approximately 17,700

new incidences of spinal cord injuries in the United States

alone, 60% of which result in either complete or incomplete

tetraplegia [4]. The total number of affected in the United States

looms around 400,000 from year to year. While worldwide,

there is speculated to be several million—though a firm

estimate has not yet been produced.

Many of the injured will fortunately experience a recovery

and regain some sense of mobility. But there remains a great

deal of victims that are not as fortunate and are forced to depend

on others for their mobility.

Our system aims to solve this issue at a universal scale, open

to everyone who needs it, without imposing any more financial

constraints on the victims than their medical costs already do.

This is why our hardware and software components are

affordable, accessible, and reliable.

We currently have a working prototype that can track a user’s

eye-gaze and generate controls for a remote-control car with

accuracies up to 75%. This is a big step up from our previous

low 50% accuracies in the beginning of the quarter. Aside from

improving both precision and accuracy, we have also iterated

through various control schemes, and have arrived at one that is

comfortable, intuitive, and accessible for even the most

severely incapacitated. All our user’s need to control the car is

a pair of eyes, the ability to blink, the ability to stare, and our

simple, affordable equipment. Here is how it all works.

II. HARDWARE

Fig. 1. General block diagram of the system structure.

A. General Overview

The general block diagram displayed in figure one showcases

how we imagine our system to look. At the heart of it lies a

Raspberry Pi 3, wired to a small camera and a liquid crystal

display (LCD). This camera and LCD combo will serve as our

user interface, and the only point from which the user will

control the car.

On the LCD we will display a live camera feed from one of

two first-person-view (FPV) cameras mounted to the anterior

and posterior of the remote-controlled car. This means that our

user’s will have an immediate, first-person view of the remote-

controlled car’s surroundings. To allow for both forward and

reverse control, the users will have the ability to toggle between

the front and rear-view cameras via a virtual button on the LCD.

When they stare at a designated spot on the LCD for more than

an allocated amount of time, the camera feed will switch.

 The camera mounted on top of the LCD will be

responsible for capturing the user’s eye-gaze and feeding it into

the raspberry pi for image-processing and eye-gaze detection.

Once our algorithms have worked their magic, the raspberry

pi will send an encoded instruction to our 2.4Ghz NRF24L01

antenna module, marked as TX and RX in figure 1.

 Through a secure channel, this radio-frequency module

transmits the instruction to an identical receiving antenna

hooked up to the ATmega328p (Arduino) directly on top of the

RC car. The encoded signal is then translated to an instruction

for our 6V DC motors, which will be driven by the affordable

L298N motor driver module.

Eliseo Nunez, Systems Engineer, Minchul Kim, Signals Engineer, Nazaret V. Montano, RF Engineer,

Emanuel David, Software Engineer, and Dr. Pramod Khargonekar, Distinguished Professor/Advisor

Eye-Gaze Control of Mobile Vehicle for

Paralyzed Patients

I

 2

B. Power Details

At this point, we have been powering our prototype system

using four AA and two 9V alkaline batteries. We realize that

this is a strange combination of voltages and the non-ideal

chemistry to drive our motors. But the system does not drain as

fast as we thought it would. In fact, we have only changed our

batteries once in the past 8 weeks of on-off but consistent use.

We estimate that in all they lasted a total of 20 hours of

continuous use. Nevertheless, we plan on migrating our power

electronics to the lithium-ion domain, in order to elongate our

systems life and improve DC motor responses.

III. SOFTWARE

A. Eye-Gaze and Blink Detection

To effectively track our user’s eye-gaze we are using the

OpenCV framework running on Python 2.7. The facial feature

recognition is made possible by an open source trained dlib

model that can detect 68 points on a user’s face with

outstanding accuracy. From these 68 points we are extracting

only 8 and have engineered a way to exploit this minimal set to

recognize blinks and gaze-direction.

 Fig. 2. The 68 points the open source dlib model can detect

In order to detect blinks, we created a function to constantly

monitor the distance between the midpoints of 38-39 and 42-41

on the left and 44-45 and 48-47 on the right. Whenever the

distance between these points drops below a certain dynamic

threshold, we register that as a blink. However, in order to make

plausible use of this in our motor control, we had to make our

system respond not to every blink but rather an extended blink

time. We therefore tuned our system to recognize an extended

blink lasting for more than .5s. This way we have an easy way

to start and stop the motors.

 In order to enable the users to steer the car, we also had to

figure out a reliable way to detect a user’s eye-gaze. The method

we use to recognize this simple. First, we make sure that our

image is converted to grayscale. This way we have an easier

time processing the pixels. We then isolate the two eyes, by

drawing a box around the outermost edges of their

corresponding landmarks. These steps are very common across

many eye-gaze detection systems [3].

After this is done, we apply our own little magic, in the form

of an adaptive filter that converts the gray scale, isolated eye

image into a binary, black and white image. It is important that

the filter for this function be adaptive as changes in

environmental light can cause undesirable thresholding with a

constant filter, resulting in lack of pupil resolution. The goal of

this step is to make the pupil as distinguishable from the sclera,

the white part of the eye, as possible.

The following step is where the most exciting of the magic

happens. We split the eye into two halves, a right half, and a left

half. And we create a function to constantly monitor the ratio of

black to white pixels in each halve of the eye. The side that is

blackest, after taking an average of 5 samples, indicates the

user’s gaze-direction.

The final step is perhaps the most important step; and that is

to normalize these ratios to the total pixel area of the eye. This

makes the algorithm immune to changes in the user’s distance

from the camera. This is an issue that afflicts many other eye-

gaze control systems and calls for the addition of other camera

set ups to compensate for the error [1]. But our system resolves

this rather efficiently without the addition of any more cameras

via this normalization.

 At this moment in time, we have not yet migrated our eye-

gaze and blink detection algorithm to the Raspberry Pi from our

original design. All our trials have been conducted on an HP

laptop with the built in web-cam, however, we have indubitable

confidence that these algorithms will also work on the

Raspberry Pi, after some optimization for the platform.

B. Control Mapping

After weighing on different designs, we decided that the

simplest and most effective way to control a car with just a

pair of eyes, and nothing more, is using the following scheme.

To start the car, the user will blink, or shut their eyes, for a

total length of time greater than .5s. Once the car has started to

move, the user can stare at the middle, the left, or the right of

the screen for more than .2s to steer the car in that direction.

To stop the car, the user can blink, or shut their eyes for more

than .4s, and the motors will immediately stop.

We are still on the look for more efficient schemes, but this

one seems to work the best so far.

C. Inter-Device Communications

Our python script is currently communicating with the

Arduino’s Universal Asynchronous Receiver/Transmitter

(UART) communication ports via the PySerial library. Note

that the Arduino in this case is substituting the Raspberry Pi in

our block diagram of Fig.1. Additionally, the Arduinos are

communicating with the NRF24L01 module via the Serial

Port Interface (SPI) protocol.

IV. CONCLUSION & REMARKS

There is still plenty of room for improvement in our system.

However, at the current protype stage, it is achieving

accuracies that are relatively stable for control. One of the

main issues that we are encountering at this moment is one

that we unfortunately did not foresee. We have noticed that,

 3

during active use, our motors do not spin at the same identical

speed, and hence the car to steers in an undesirable direction.

We are diagnosing the issue but believe that the culprit may be

our L298N motor driver. If this is so, we will be faced with

making decision of either changing our motor driver module

or adding feedback control in order to remedy the

discrepancies in motor speed.

After this issue, is fixed, we will simultaneously work on

brining the accuracy our control towards 100% and tackling

the infamous recalibration issue that many eye-gaze control

systems have [2]. This being that there is currently no one-

sized system model that fits all potential users, since there is

significant eye-variation across every individual. At this

moment our designs have been fitted to one of our team-

members eyes, but we can figure out a dynamic approach to

select our threshold values to match every unique eye

geometry.

APPENDIX

1) What technical standards were relevant to your projects,

how did you pick between them, and was your resulting design

compliant with these standards? Some simple ones include

Bluetooth version, WiFi version, USB version, SD card type,

etc., but many more specialized standards exist too. Non-

compliance can easily occur if, for example, FAA, FCC, etc.,

regulations are ignored, off-spec or counterfeit parts are used,

and so on. Please review the standards document available on

the class web site and as discussed in class.

In order to comply with the FCC standards and rules, we had

to choose an antenna which would operate quick enough to

satisfy our hefty data-rate transmission needs, while

simultaneously making sure that it did not interfere with any

other high-frequency signals or sensitive equipment in our

surroundings. This is we chose our antenna to operate in the

Industrial, Scientific, and Medical (ISM) Band of the

spectrum. We are able to satisfy our fast transmission rate

design requirements, with a very narrow private channel for

our devices, while ensuring that we do not violate any of the

FCC standards or rules.

2) What constraints have you faced in designing and building

your projects and how did you cope with them? Examples of

possible constraints include accessibility issues, safety code

issues, constructability, cost (always a big one), power

constraints, ergonomic difficulties, constraints that affect the

ability to extend the functionality and interoperability of

the project, legal considerations, maintainability issues,

manufacturability, marketability, policy and regulatory

issues, scheduling issues, sustainability issues, usability

issues, etc. What constraints were important in your project

and how did you work around them or solves them?

Our entire project revolves around trying to resolve a host of

accessibility issues while meeting very strict constraints. We

are designing a system that is to be operated with nothing else

but a paralyzed user’s eyes. And one of the biggest challenges

we are faced with is to figure out how to encode as much

useful information in simple-eye movements, without

inconveniencing, tiring, or confusing our users.

 The eyes of all individuals are constantly moving, jittering,

between fixations, in motions we call saccades. And it is

important that when controlling a mobile, we ignore these

sudden movements to concentrate on the real intentions of our

users’ eye-gaze, lest we cause an accident. We have worked,

not around, but through this problem by iterating through as

many control schemes designs as we can conceive. And even

though we have currently arrived at a potentially good design,

we are still actively looking for any more improvements we

can make.

Another constraint we are faced with, though not as serious

as the first is that of power consumption. We must figure out

an effective way to power our devices without incurring too

much weight to our design. To solve this, we will look at the

average power consumption, amperage, and voltage draw of

our system and find a corresponding power source for our

needs.

3) In our current world of unrelenting hacking and hidden

vulnerabilities, what hardware and software security issues

risked being present in your work and how did you mitigate

them? What hardware insecurities did you face? For example,

the “spectre” and “meltdown” problems are hardware

insecurities that have plagued Intel over the last several years.

Many, many software insecurities also exist, seemingly turning

up at an exponential rate. What did you to identify security

issues, which were found to be a threat, and what did you do

to help prevent exposure to these vulnerabilities, etc?

Because our system deals with the remote control of two

potentially dangerous motors, it is important that we protect

against any unwanted interference, jamming, or undesired

manipulation of our transmission signals. These are potential

threats that, when brought up to a larger prototype scale, can

endanger not only our user but any nearby individual as well.

We can effectively deal with the jamming, by simply killing

the DC motors whenever our connection is broken and or

distorted. And we already deal with interference through the

handshake protocol, which only drives the motors after the

sending instruction has been acknowledged and confirmed by

the both receiver and transmitter. This adds latency to our

system but in the end, it is always best to have that as a

security measure.

We are not entirely sure how to deal with the case of a

malignant transmitter hijacking our channel, but we are

currently investigating this vulnerability and its potential

solutions.

ACKNOWLEDGMENT

We would like to thank all the team members that made this

project possible through financial and intellectual backing. And

we would also like to thank Dr. Pramod Khargonekar for his

counsel in times of need!

 4

REFERENCES AND FOOTNOTES

REFERENCES

[1] A. Kar and P. Corcoran, "A Review and Analysis of Eye-

Gaze Estimation Systems, Algorithms and Performance

Evaluation Methods in Consumer Platforms," in IEEE Access,

vol. 5, pp. 16495-16519, 2017.

[2] Anna Maria Feit, Shane Williams, Arturo Toledo, Ann

Paradiso, Harish S. Kulkarni, Shaun Kane, and Meredith Ringel

Morris. 2017. “Toward everyday gaze input: Accuracy and

precision of eye tracking and implications for design. In Proc.

of CHI

[3] H. Nakayama, N. Yabuki, H. Inoue, Y. Sumi and T.

Tsukutani, "A control system for electrical appliances using

eye-gaze input," 2012 International Symposium on Intelligent

Signal Processing and Communications Systems, Taipei, 2012,

pp. 410-413.

[4] ”National Spinal Cord Injury Statistical Center, Facts and

Figures at a Glance”. Birmingham, AL: University of Alabama

at Birmingham, 2019.

