
EchoSense: Personal Surrounding Safety Detection System
Team Advisor: Professor Hung Cao and Floranne Ellington

Andrew Cassidy (Hardware and Firmware Developer)
Jerry He(Android Application Developer)

Kohsuke Hirano(Android Application Developer)
Isaac Yen (Firmware Developer)

Abstract:
EchoSense is a personal surrounding

safety detection system. Its goal is to alert
cyclists of approaching cars. There are two
objectives for EchoSense development. The
first object is to develop a hardware
prototype that uses the LIDAR module to
scan the distance between a cyclist and an
approaching car. The hardware calculates
velocity using the set of distances and sends
a Bluetooth Low Energy attribute value 1 to
the Android application if the approaching
car travel too fast. The second objective is
the Android application development. The
application read the Bluetooth attribute
value from the hardware and notifies the
cyclist of the approaching car if the value is
1. Both objectives were developed in
parallel to complete a functional prototype
before the deadline on December 6. The
hardware is fully functional. The software is
80% complete, as more work is needed to
enable the application to continuously scan
signals from the hardware and notify the
cyclist when the attribute value is 1.

Introduction:
The number of cyclists on the road

has increased steadily in recent years. [1][3]
Consequently, fatal road accidents are more

likely to involve cyclists. [2] Some of these
accidents are attributed to inattentive
cyclists, reckless drivers, or collisions
between cyclists and drivers. Team
EchoSense aims to build a device to alert
cyclists of approaching vehicles so they
know whether they are in danger. The team
decided to build EchoSense, a Personal
Surrounding Safety Detection System that
reads the approaching vehicle's speed and
alerts the cyclists through Bluetooth if the
vehicle travel at high speed.

Initially, EchoSense wanted to use
Ultrasonic Distance Sensor HC-SR04 to
detect the approaching car. However, the
team discarded that idea because of the
ultrasonic sensor’s limited range. Instead,
EchoSense chose LIDAR-Lite v3HP sensor
to detect approaching vehicles.

Team EchoSense decides to develop
the hardware/firmware and the Android
application in parallel. The
hardware/firmware uses the LIDAR sensor.
The sensor uses a laser and time of flight
measurement to determine its distance from
an object. We calculate the velocity of an
approaching vehicle by taking multiple
readings of the car's distance from the
device. The Android application reads the
Bluetooth Low Energy attribute advertised

by the hardware to alert the cyclists of
approaching cars. The team develops and
tests the products incrementally to catch any
existing bug and fix any issue that it
encounters. The hardware is fully functional.
The application is 80% completed. Team
EchoSense still needs to implement a feature
that allows EchoSense’s application to
continuously read the Bluetooth attributes
from the hardware. The team strives to
create an accurate personal surrounding
safety detection system for cyclists on the
road.

Methods
To increase team EchoSense’s

efficiency in developing EchoSense
prototype, the team divided the project into
two major parts: hardware/firmware
development and the Android Application
development. The team developed the two
parts in parallel. It implemented and tested
new codes incrementally to ensure ease of
debugging and functional software
implementations. The team also used a
Gantt Chart to keep track of the deadlines,
progress, and milestones.

Hardware

EchoSense’s hardware consists of a
Garmin LIDARLite v3HP Lidar module for
rangefinding, and the OSHChip
microcontroller module as the main
controller. The OSHChip is based on the
Nordic nRF51822 microcontroller, and has
onboard Bluetooth LE support in addition to
an ARM Cortex m0 CPU and 32 kilobytes
of RAM. Power is supplied by a standard 9
volt battery, which is converted to 3.3V and

5V for the microcontroller and LIDAR
module respectively using linear voltage
regulators.

During development, we ran into
some problems with the voltage regulators
failing. After this happened twice, we added
a pair of zener diodes to limit the voltages to
within the tolerances of the OSHChip and
LIDAR module to prevent any further
damage.

Figure 1: EchoSense prototype hardware

Firmware
EchoSense’s firmware was written in

C++ on the mbed framework, and uses the
LIDARLite_v3HP library for
communicating with the LIDAR module.

At startup, the LIDAR module and
job system are both initialized, and the
bluetooth broadcasting is started. The job
system begins calling a tick function at a
preset rate, currently set to once every 50ms,
or 20hz. The tick function acquires the
current reading from the LIDAR module,
and uses it to calculate the velocity using the
following formula:

V elocity ∆distance) time = (÷ ∆

If the velocity is greater than the
maximum cutoff speed of 60 km/h,
EchoSense assumes that the velocity is a
false positive. The average distance and the
old distance between the approaching car
and the cyclist will be assigned to the newly
measured distance. However, if the velocity
is greater than the trigger speed of 5 km/h
and less than maximum speed 60 km/h,
EchoSense will send a BLE attribute value
of 1 to the EchoSense’s Android application.
The application will warn the cyclist of the
approaching car.

Android Application

The goal of the mobile application
for the EchoSense system was to notify
cyclists when dangerous objects are
approaching via the notification system that
is built into the mobile phone. When the
hardware issues an alert through Bluetooth,
the mobile application will issue a
notification to alert the cyclist.

The mobile application for
EchoSense is currently available on Android
devices. The application is written in Java
on Android Studios IDE. It is compatible
with any android device that is at API level
23 and above; this means that the android
device needs to have an Operating System
based on Android 6.0 and up installed. The
android device will also need to have
Google Play Services and Google services
framework installed.

When the application is launched, it
asks the user for bluetooth and location
service access. The application requires
bluetooth to communicate to the hardware,
and it also requires location for BLE

services. This allows users to control
bluetooth connectivity from within the
application.

The Android application is
developed using the built-in platform
support for BLE, short for Bluetooth Low
Energy (android.bluetooth) [4]. This built-in
platform have all the classes and methods
for connecting to BLE devices. The
application utilizes these classes and
methods to scan, connect, and communicate
with BLE devices.

Each BLE device has its own GATT
(Generic Attribute Profile) that defines the
way data is transferred between devices. The
EchoSense Android Application obtains the
GATT profile from the EchoSense hardware
when a bluetooth connection is made
between the Android device and the
EchoSense hardware. The application then
obtain characteristic information from the
GATT profile; the characteristic contains
values set by the EchoSense hardware. The
application can then read from the
characteristic; when the application sees a
rising edge from the characteristic, it outputs
a sound notification and vibration (if
supported by the device) to alert the cyclist.

The development of this application
faced a lot of difficulties. The first iteration
of the application was able to turn on the
bluetooth functionality of the Android
device but was not able to scan for nor
connect to the EchoSense hardware. As it
turns out, there are two different Bluetooth
API for android; one for Bluetooth Classic
and one for Bluetooth Low Energy. The first
iteration of the EchoSense application used

the API for Bluetooth Classic which does
not support Bluetooth Low Energy.

The second biggest difficulty on the
Android application development is reading
the characteristic. A lot of time were spent
on debugging reading characteristic as the
application was not getting the right value
from the characteristic or it was not
continuously reading from EchoSense
Hardware.

In the future, it will be a wiser idea
to utilize the Nordic Bluetooth Android
Library to develop the app as this library
have better support for the hardware for the
EchoSense hardware since the hardware is
made by the same company.

Prototype Results
EchoSense has completed its

hardware and hardware. If the team moves a
fast-moving object toward EchoSense’s
sensor, the device sends an attribute value 1
to the connected mobile device. The team
tests the attribute value using the mobile
application nRF Connect. If an object is
moving faster than 5 km/h but less than 60
km/h toward EchoSense, the attribute value
changes from 0 to 1 on the nRF app. Team
EchoSense also take false-positive into
consideration in that if something suddenly
moves sideways into EchoSense’s range,
EchoSense will not alert the cyclist of that
object. This false-positive elimination
feature is implemented through maximum
velocity condition, in that the sideway
moving object will not trigger the
EchoSense’s notification because its
movement will be perceived as greater than
the maximum speed of 60 km/h in the

EchoSense. That way, EchoSense will only
detect the fast-approaching car and eliminate
all other false positives.

Summary
This report showcases the design of a

personal safety system for cyclists that
utilizes the LIDAR module. The design uses
the LIDAR module in conjunction with a
Bluetooth module as well as an Android
application to notify the cyclist. The LIDAR
module captures the approaching object
behind the cyclist and calculates its velocity.
If it determines the object is approaching too
fast, it will send a signal to the cyclist’s
mobile phone via Bluetooth to alert them.
The figure below showcases the basic idea
of this design.

Figure 2: OSHChip operation diagram

The main objectives were met in this
design. The LIDAR module is able to
determine whether the object is approaching
too fast by calculating its velocity using a set
of captured distance from the approaching
object. The LIDAR module then outputs a
signal via Bluetooth and it is successfully
received by the Android application. The
only problem remains is for the Android
application to continuously scan for signal
from the LIDAR module. The team will
solve this problem in the winter quarter.

Conclusion
This report examined the

development of a personal safety system for
cyclists. The two main objectives of this
design so far were to develop a working
prototype for the hardware and a functional
software that can detect the signal from the
hardware. So far, a majority of both
objectives were met. The prototype for the
hardware is fully functional; it is able to
detect approaching objects and determine
whether it is safe or not. The software is also
80% functional as it can receive the signal
from the hardware. The only steps left are to
do more real world testing for the hardware,
and to finish the Android application so that
it can continuously scan for signal from the
hardware and notify the user when it
receives the correct signal.

Acknowledgement
Team EchoSense would like to thank

our advisor Floranne Ellington and
Professor Hung Cao for giving advice to the
team on building the prototype EchoSense.
The team would also like to thank Philip
Freidin at Fliptronics for providing the
OSHChips, and the EECS159A instructional
staff for letting the team borrowing the
Power Supply in the lab. Lastly, Team
EchoSense would like to thank every
member on the team for completing the
prototype.

References
[1] Steve I. “Bicycle accidents in the United
States people powered movement”, People
Powered Movement, 2019. [Online].
Available:

https://www.peoplepoweredmovement.org/b
icycle-accidents-in-the-united-states/​.
[Accessed: Nov 6 2019].
[2] L. Watson and M. Cameron, “Bicycle
and motor vehicle crash characteristics,”
Monash University Accident Research
Centre, Melbourne, Victoria, 2006.
[3] “Road safety factsheet,” ​The Royal
Society for the Prevention of Accidents​,
Nov-2017. [Online]. Available:
https://www.rospa.com/rospaweb/docs/advic
e-services/road-safety/cyclists/cycling-accid
ents-factsheet.pdf. [Accessed:
07-Dec-2019].
[4] “Bluetooth Low Energy Overview,”
Android Developers, ​N.d. [Online].
Available:
https://developer.android.com/guide/topics/c
onnectivity/bluetooth-le​. [Accessed: Oct 30
2019].

Appendix

Technical Standards
UART: EchoSense’s design team chooses
UART standard to enable serial monitoring
for debugging. EchoSense is compliant to
the UART standard because it is capable of
serial monitoring.

I2C: EchoSense’s design team chooses I2C
connections to enable serial monitoring.
EchoSense is compliant to I2C because its
circuit connection is based on I2C standard.

BLE: EchoSense’s design team chooses
Bluetooth Low Energy standard for
communication between the device and
mobile application because nRF51822 is

https://www.peoplepoweredmovement.org/bicycle-accidents-in-the-united-states/
https://www.peoplepoweredmovement.org/bicycle-accidents-in-the-united-states/
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le

compatible with Bluetooth Low Energy.
EchoSense uses Mbed BLE source code to
develop its notification services to be
compliant with the BLE standard.

Constraints
The major constraints that

EchoSense faced were interoperability,
power, and scheduling.

The mobile app is a key component
of EchoSense. The interoperability problem
stemmed from EchoSense’ initial inability to
develop a mobile application that scans and
read BLE information advertised by
EchoSense. To overcome this constraint, the
mobile app development members used
Nordic Bluetooth Android Library to
implement functions that read the BLE
information from EchoSense.

Another problem EchoSense faced
was power supply in that EchoSense’s
voltage regulator failed and the battery
overloaded the microcontroller. To prevent
this problem from happening again, the
design team added additional diodes to limit
the power supply’s voltage.

The last constraint was scheduling.
Each EchoSense’s members have different
schedules and assignments. This reduces the
team’s development time for EchoSense. All

members of EchoSense partitioned some of
their time in the week to prototype
EchoSense and split the tasks so the team
can develop its hardware, firmware, and the
mobile application in parallel in this limited
development time.

These major constraints will prevent
the team from completing its prototype if
they are not fixed. It is necessary to
overcome these constraints.

Security Issues

Currently, EchoSense only
broadcasts a single bit of information,
depending on weather or not a vehicle is
approaching from behind. This is not
making use of any kind of encryption or
built in security features of the Bluetooth LE
protocol. The only security concern with the
prototype as it currently exists would be a
hacker spoofing the signal to prevent the
rider from being alerted.

As EchoSense is further developed,
it will likely have configuration data and
more information being broadcast over the
Bluetooth bands, some of which could be
sensitive information. We plan to begin
using the built in Bluetooth LE security
features if required.

