

250

200

> 150

100

50

Overview Design an autonomous robot that can track a predetermined collision-free path in a 2D environment.

- self-contained and self-sufficient
- follow the path with a 10% maximum error
- a budget of \$750
- 1 quarter project

Design parameters

- 2D environment:3mx3m
- obstacles diameter:30cm
- robot dimension:20cmx30cm
- robot weight <3kg
- Vmax:0.75m/s
- Power:24W,12W/motor
- 44 min battery lifetime with 5.5Ah battery

Mechanical Performance

- all components fit tightly
- axis of rotation line up
- 4 tire all touches the ground
- Movability
- Tires turn freely

X 100

Y 300

Hardware Performance

Encoder: measure 5m distance error within 10cm Motor: left motor has linear relationship between PWM and angular velocity, the right motor didn't **Gyro:**static error within 0.06 degrees after calibration

Robot for Executing Physics Inspired Path Planned

Rong Tian, Riko Takahara, Tianhao Zheng, Hugo Martinez, Michael Punaro **Department of Mechanical and Aerospace Engineering at University of California Irvine Sponsored by Shorbagy Mohamed**

Motor Calibration

Wiring Diagram

Results

- The robot can move at different speed
- Code can command robot to turn at different angles
- developed in the future.

Future improvement

- Finalize key parameters
- Spend more time during testing phase
- velocity
- reduce robot size and weight

Final design • Differential Drive

two motors to supply power and control steering

• Feedback control

-determine position from MPU6050 output -calculate desired steering angle -calculate angular velocities to make the turn -convert angular velocity to PWM

Final Robot Prototype

Motors

• This project serves as a proof of concept for the path planner and the robot, and could be further

• Ensure four wheels touch ground and robot can move straight when motors rotate at same angular

• improve algorithm and tune control parameters to reach optimal performance