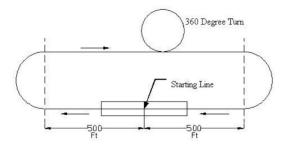
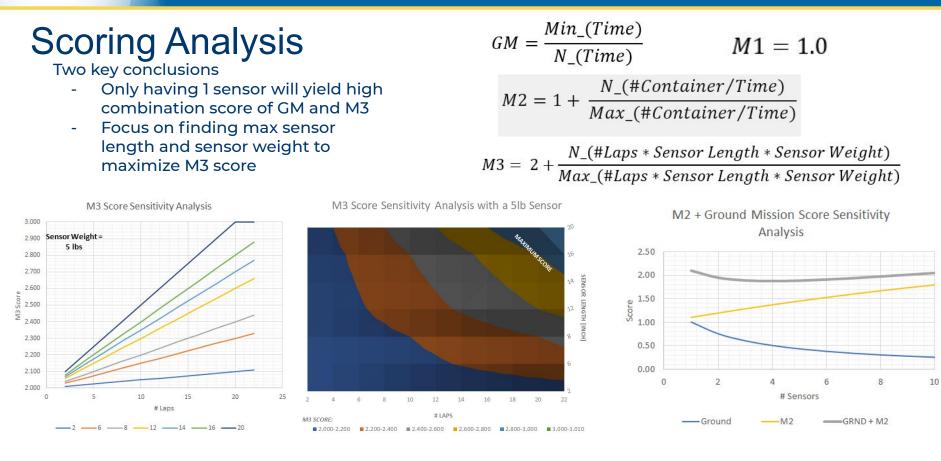


Spring 2021 DBF Final Presentation

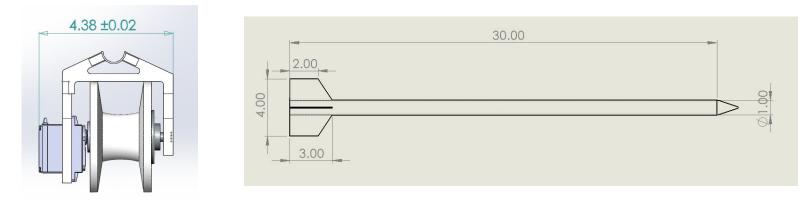

Team 2

Teagan Adsit, Weixiao Wang, Yuchen Song, Jiawei Lin


DBF Problem Definition

- Design and Manufacture an aircraft to enter in the 2020-2021 AIAA Design/Build/Fly competition
- The competition will happen virtually, as decided by the AIAA
 - Will continue to make an aircraft capable of accomplishing competition requirements even though we will not be competing
- Aircraft is designed to achieve best score overall
- Aircraft will carry and tow a sensor package and complete all mission requirements
 - Mission 1: 3 laps with no payload in 5 min
 - Mission 2: 3 laps with payload (sensor in shipping containers) in 5 min
 - Mission 3: Deploy, tow and recover sensor and run as many laps as possible in 10 min
 - Ground Mission: Load and unload payload in the least time possible
- Design Constraints
 - 200 Whr battery capacity
 - 5 foot wingspan
 - Sensor must be fully contained in the shipping container during M2 and M3
 - Sensor must be at least 4 times longer than its diameter
 - Tow cable must be at least 10 times longer than the sensor length

Course layout shown to scale.



Design Goal

Given the selection of focusing on mission 3. Our team is designing an airplane to carry the payload and deployment mechanism while completing as many laps as possible.

Wings Design

In accordance with the design goal, the plane is being designed to fly as fast as possible.

Requirements:

- Takeoff in 100 ft
- 5 ft span
- 200 W hr Battery

Goals:

- Maximize aspect ratio (minimizes drag)
- Minimize weight
- Determine max cruise speed
- Select motor-propeller combo able to produce the thrust required

Limiting factors for wing sizing:

Takeoff Condition:

• Higher AR results in a higher wing loading.

$$S_g = \frac{1.44W^2}{g * \rho * s * C_{Lmax} * (T - D)_{0.7V_2}}$$

Reynolds Number:

• Higher Reynolds number, higher C_{Lmax}

Thickness of the Airfoil:

• Must be thick enough to cover the spar

Tail Design

Similar to the wing, the tails are designed to minimize drag.

Requirements:

- Goals:
- Falls within recommended tail volume range bounds
- Provides a large enough moment to allow for takeoff

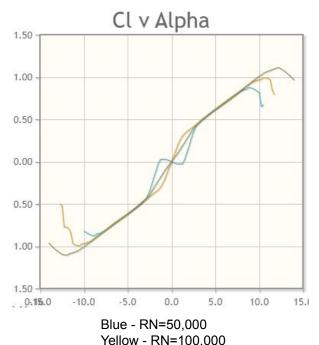
- Maximize aspect ratio
- Minimize weight

Tail Design

Historical Tail Volume Ranges: AR_h : 3-5 AR_v : 3-5 V_h : .48-.92 V_v : .24-.86

 $\frac{S_{h^{\circ}h}}{Sh}$

A chosen volume coefficient gave us the planform area. That area will be used with the chosen aspect ratio to solve for the chord.



Tail Chord Limiting Factor

A chord that is too small will lead to a lower Reynolds number. This reduces the performance of the tails as shown to the right.

- Horizontal and Vertical Tail
 - Minimum chord length .5 ft

Minimum Reynolds number was set to 140,000 so the Cl max would match the assumptions made for takeoff calculations.

Green - RN=200.000

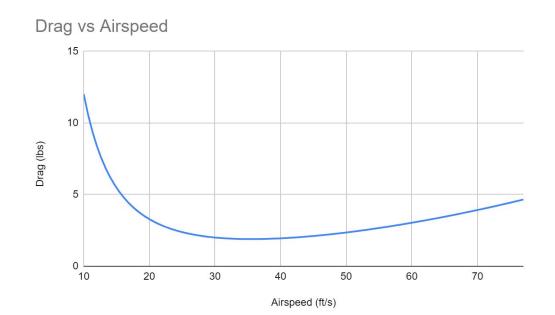
Wing and Tail Construction	Pros	Cons
Foam	 Construction has very few steps Easy weight predictions 	 Sourcing thick enough foam is very difficult Very easy to break or dent until coated Heavier (.634 lbs)
Balsa Structure	 Light weight (.45 lbs) Materials are currently available in lab Has empty space for wires and servos, making the aileron construction easier 	 Construction requires more time in lab Coating can sag between ribs if spacing is not correct

Fuselage Sizing

Sensor length determines the overall length of the fuselage required. Sensor retraction method determines the height and width.

The goal for our design process is to minimize weight, while having a design that can result in a cg near the quarter chord of the wing.

Fuselage Construction Method	Pros	Cons
Kevlar Shell	 Lightweight (.0217 lbs) Less Drag due to smaller outer diameter Easier construction for a circle 	 Everything must be attached to tail boom which restricts the balancing of the center of gravity Team lacks experience making molds
Balsa Wood Structure	 Can provide additional support to the landing gear Has more attachment points which can help balance the center of gravity Easier to design different shapes. More rapid construction 	 Higher weight (.0638 lbs) Outer dimensions will be larger due to rib thickness Sensor might have more difficulty entering fuselage.



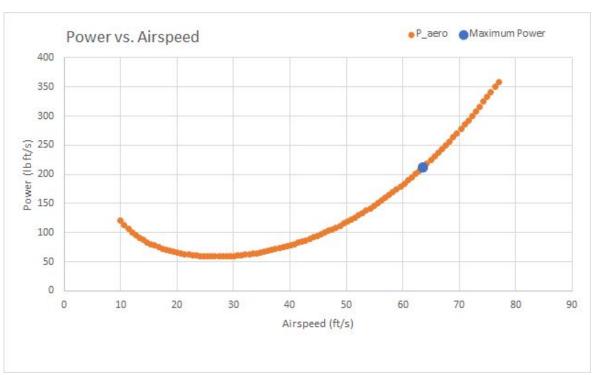
Drag Calculations

Drag was calculating using the flat plate area. This drag was used to determine cruise velocity.

$$D_{total} = fq + \frac{1.33}{\pi qe} \left(\frac{W}{b}\right)^2$$

Determining Flight Condition

Drag buildup lets us determine the thrust for cruise, but the design goal is to fly as fast as possible, not minimum drag. To find this cruise condition the following mission requirements were used:


- Battery is 200 W hr
- 10 minutes of flight

The maximum continuous power for the duration of the mission was found to be 212 lb ft/s. This is the condition used to find the maximum cruise speed.

Determining Flight Condition

Power was plotted for different airspeeds to determine our cruise condition. This was found to be 63 ft/s.

Motor-Propeller Sizing

Thrust has two requirements: Takeoff Thrust: 7.5 lbs Cruise Thrust: 3.28 lbs at 62.93 ft/s

Goal:

Select the lightest motor-propeller combination that is able to produce the required values above. From this the sunnysky x3520 motor was chosen with the 13x6.5 propeller.

Motor-Propeller Verification

Takeoff Verification:

Power (Watts)	Thrust (lbs)	
1000	8.21	
900	7.72	
800	7.1	
700	6.64	
600	6.24	
500	5.45	

Cruise Verification:

For this test the motor was ran at the cruise thrust and the total duration of runtime was recorded.

Total Runtime: 13 minutes 7 seconds

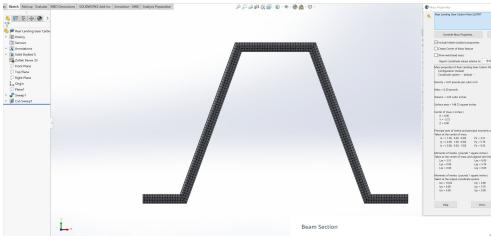
Landing Gear Design

al Balah Mathag Stadaw MRD Downama SDDDM0204.01 m Andrea MRD Stadge Presentation - 戸 戸 よ目 公司 日 公司 日 日 日	nn_ex			
6 III E (4) @ >		Mass Properties		_
Cination Annum In (Sinoy		Simulation Aluminum Lan	ding Gear Connection.SLDPRT	
i & sinoy Bienn X souther		Simulation Aluminum Lan	ang dear connection.scorki	
B (Set Mark)) B (Set Mark)	8			Options
I have have	-			
Dispine Logi	_			
		Override Mass Prop	perties Recalco	ulate
· #Colonyl		overnae mass rieg	Particular. The conce	unute
	1	Include hidden bodies/	components	
	•	Create Center of Mass		
		Show weld bead mass		
			default	
	4		ues relative to: default	
	4		tion Aluminum Landing Gear C	Connection
		Configuration: Default Coordinate system: d	lafault	
		coordinate system u	eradit	
- Tank Make Balan M Dominist 1000/000.Mellin Brudelen MD: Angestregatorie 月月日日日日 日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	00_4X	Density = 0.10 pounds per	cubic inch	
Provide a state of the state o		Mass = 0.44 pounds		
Part of the Cale and the control of the Cale and the Cale	ê t			
Charles TE F IT		Volume = 4.26 cubic inche	s	
- μαρια (γραμ - β ² μαμ] - β ² μαμ] - β ² μαμ]	9	Surface area = 144.32 squa	are inches	
Review 1 1996 of 1996	1			
(files)	1	Center of mass: (inches)		
© 3 Sender April . Ti Connetion		X = 0.00		
g Paula		Y = -5.39 Z = 0.00		
A free (for term 2)		2 = 0.00		
E Read Options		Principal axes of inertia an	d principal moments of inertia	(nounds * square inches)
© Forest (anothen € Deplement (fm → Tait counts) - Tait counts (20 m)		Taken at the center of mas		.,,,
Over1 (sparkes) Over2 (sparkes) Over2 (sparkes)	4	lx = (1.00, 0.00, 0.00)) Px = 7.10	
		ly = (0.00, 1.00, 0.00		
	_	Iz = (0.00, 0.00, 1.00	0) Pz = 17.82	
		Moments of inertia: (pour	ds * square inches)	
			ss and aligned with the output	coordinate system.
SECURIMENT Resultional Product. For Instructional Data Colu-		Lxx = 7.10	Lxy = 0.00	Lxz = 0.00
Varia		Lyx = 0.00	Lyy = 10.81	Lyz = 0.00
		Lzx = 0.00	Lzy = 0.00	Lzz = 17.82
		Moments of inertia: (pour	ds * square inches)	
		Taken at the output coordinate system.		
		lxx = 19.75	lxy = 0.00	lxz = 0.00
		lyx = 0.00	lyy = 10.81	lyz = 0.00
		Izx = 0.00	Izy = 0.00	Izz = 30.46
		Help	Print	Copy to Clipboard

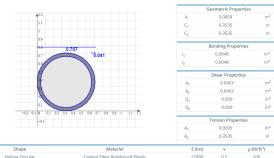
Property	value	onits	
Elastic Modulus	10442717.11	psi	
Poisson's Ratio	0.33	N/A	
Shear Modulus	3901515.143	psi	
Mass Density	0.1022402075	lb/in^3	
Tensile Strength	76144.81227	psi	
Compressive Strength		psi	
Yield Strength	68167.7367	psi	
Thermal Expansion Coefficient	1.311111111e-05	∕°F	
Thermal Conductivity	0.00209984	Btu/(in·sec·°F)	v

Material: Aluminum 7075(Conventional) Mass: 0.44pounds

Simulation Assumption: 20 pounds force exerts on one wheel. (safety factor of 3)


Result: Max Stress: 1.759*10^8 N/m^2 (Yield strength:4.8*10^8 N/m^2) Maximum Displacement: 2.082mm

Discussion: Heavy in weight, but applicable from structural strength perspective.


Hollow cross section Thickness: 0.1 inch on sides 0.05 inch on top and bottom

Landing Gear Design

0.1075 kp-4

tsz = 0.00 tyz = 0.00 tyz = 15.36

Copy to Clipboars

Final Choice

A carbon fiber plater labricated from standard modulus plain veave carbon fiber in a balanced and symmetric 0/90 layup has an elastic bending modulus of approx. 10 MSI. It has a volumetric density of about .050 lb/n/3. Thus the stiffness to veight ratio or **Specific Stiffness** for this material is 200 MSI The Strength of this plate is approx. 90 KSI. Not **be Specific Strength** for this material is 1200 KSI.

By comparison, the bending modulus of 6061 aluminum is 10 MSI, the Strength is 35 KSI, and the volumetric of density is 0.10 lb. This yields a **Specific Stiffness** of 100 MSI and a **Specific Strength** of 350 KSI. A130 steel has a stiffness of 30 MSI, a strength of 125 KSI and a density of .3 lb/in3 This yields a **Specific Stiffness** of 100 MSI and a **Specific Strength** of 417 KSI.

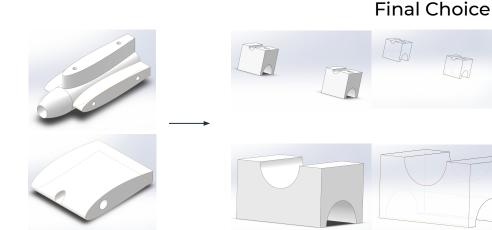
Material	Specific Stiffness	Specific Strength	
Carbon Fiber	200 MSI	1800 KSI	
6061 Aluminum	100 MSI	350 KSI	
4130 Steel	100 MSI	417 KSI	

Material: Carbon Fiber Mass: 0.20pounds

Simulation Assumption: 20 pounds force exerts on one wheel. (safety factor of 3)

Result: Maximum Bending Moment 0.1075 kip•ft. (Far less than Maximum Bending Strength)

Discussion: Light in weight, and strong in Structural Strength Weixiao Wang



Design of Connection between spars and tail boom

Design by Teagan

Advantage: Functional and easy to assembly. Disadvantage: Hard to manufacture (Hard to print layer by layer in 3D printed machine)

Design by Weixiao


Advantage: Functional, easy to assembly, aerodynamic. Disadvantage: Heavy weight causes potential for tail heavy in center of gravity. Advantage: Lightweight, functional, easy manufactured, high structural strength. Disadvantage: Have to use Carbon Tow to reinforce the joints.

Further implement the design idea to landing gear connection

Design and Manufacture of Cross Section of Wings and Tails

Second Prototype: Based on previous year aircraft dimensions. Abandoned reasons: Different mission compared to previous aircraft.

Final Prototype: Chord length 6 inch. Reason for choice: Based on tail volume calculation and Reasonable Reynolds number for Flight.

First Prototype: Based on theoretical calculations. Abandoned reasons: Low Reynolds Number.

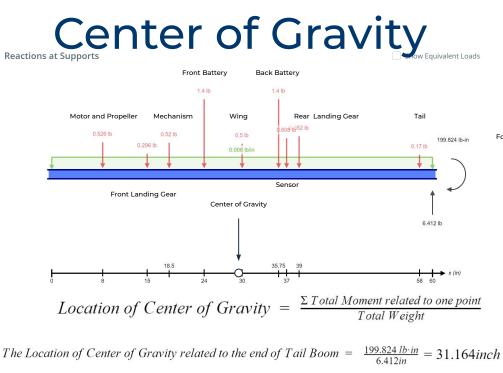
Tail: Chord length 6 inch.

Wing: Chord length 8.5 inch.

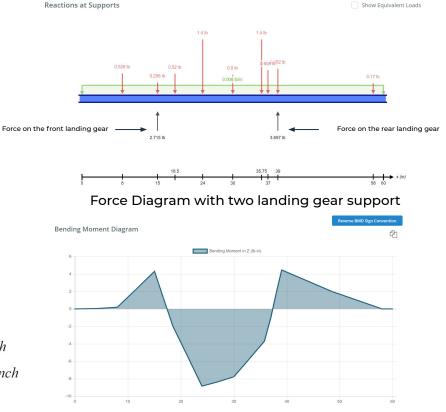
Horizontal Tail Assembly

Wing Assembly

Vertical Tail Assembly

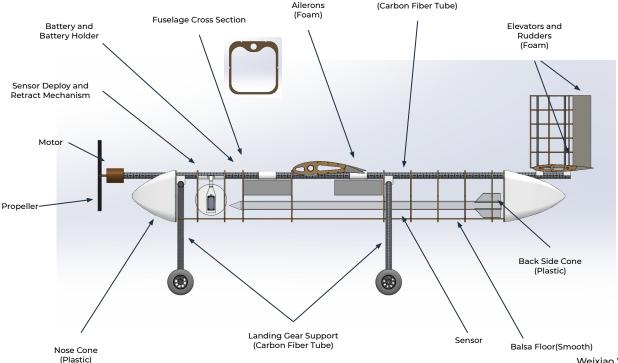

Weight sheet

1	Parts Name	Weight(pounds)
2		
3	Propeller	0.07
4	Motor	0.456
5	Front Landing Gear	0.196
6	Front Landing Gear Connection(Carbon Fiber)	0.07
7	Landing Gear Connection(PLA)	0.03
8	Baterry Connection	0.04
9	Battery*2	2.77
10	Mechanism	0.52
11	Aileron*2	0.02
12	Wing	0.45
13	Wing Connection	0.03
14	Rear Landing Gear*2	0.392
15	Rear Landing Gear Conneciton(Carbon Fiber)	0.22
16	Landing Gear Connection(PLA)	0.04
17	Sensor	0.608
18	Horizontal Tail	0.06
19	Vertical Tail	0.03
20	Landing Gear Connection*2	0.08
21	Tail Boom	0.34
22		
23	Total Weight	6.422


Original Assumption of the Aircraft is approximately 6 pounds.

Current Calculation of Total Weight is approximately 6.4 pounds. (Reasonable Value)

The location of Center of Gravity related to the front of Tail Boom = 52 - 31.164 = 20.836 inch


Moment Diagram with two landing gear support Weixiao Wang

Aircraft Configuration

Tail Boom

Weixiao Wang

Risk Assessment(Potential Problems)

- If the rib spacing is too short, the coating can sag between them which will ruin the part. We used values from previous airplanes and recommendations by Colin Sledge for these distances, but no prototypes were constructed.
- Sensor deployment and retraction has not been tested in actual flight, so more adjustments may be required.
 - Pitch up during deployment and retraction
 - Altering the hatch entrance

Thank you for watching