
1

CrowdVision
Gianna Mascardo, Wesley Bellin, Dylan Agiman, and Jens Tuyls

Professor Stuart Kleinfelder
Department of Electrical Engineering and Computer Science

Abstract—CrowdVision uses computer vision and a Raspberry
Pi v3 module with a camera to help students conveniently
and quickly find an available study room. The camera on the
Raspberry Pi v3 takes pictures of the study room at timed
intervals and sends it to our processor using Wi-Fi. The processor
uses Facebook’s Detectron2 library to analyze each image and
extract how many people are in it. After the image has been
analyzed, it is removed and the extracted occupancy data is stored
in our database. Students can conveniently see our collected data
through our website and thus can view which study rooms are
available in real time. This allows students to focus less on where
to study and more on what to study.

Index Terms—Computer Vision, Study Rooms, University

I. INTRODUCTION

F INDING study spaces is a key consideration for students
at UC Irvine and other institutions. Currently, room

availability is an important piece of information that is not
readily available to students. CrowdVision plays a role in
providing that information to students, and helps them make
informed choices on where to study. Our goal is to create a
system that will detect how many people are in a study room
to see if it is at capacity, allowing students to spend less time
looking for available rooms and more time studying.

Past work in population-counting includes density calcu-
lation instead of by-person counting. [1] shows a possible
implementation of one such density-estimation algorithm to
count higher densities of people. In this case, the system
makes an estimation of the number of people in an area
rather than physically counting each one. This allows for faster
performance, at the expense of accuracy. Other systems have
used a break-beam system, where a person is counted once
they cross the threshold of a sensor [2]. Yet also this system
sacrifices accuracy for speed performance.

Our implementation is ideal for small to medium-sized
rooms, because we would want a high degree of accuracy
with our calculations. Since the rooms we are implementing
CrowdVision in are of this size range, doing a by-person
calculation will not be too resource intensive, and still retain a
high level of accuracy. If we were to use our system in a larger
room, it might make sense to shift our detection strategy to a
more estimate-based approach to make sure that the detection
can still happen sufficiently rapidly.

II. MATERIALS USED

CrowdVision uses a combination of hardware and software
materials. The Hardware side of our project consists of using a
Raspberry Pi 3 Model B+, Raspberry Pi Camera Board v2, 5V
2.5A Switching Power Supply, a Raspberry Pi Case (to protect

the Board and camera), and Mounting items. The Software
side of our project consists of the Facebook Detectron2 as
our Computer Vision library, Flask Server on Heroku, and an
Azure SQL database for our database.

III. HIGH-LEVEL HARDWARE AND SOFTWARE SYSTEM

CrowdVision integrates hardware and software systems to-
gether to provide students real time data about the availability
of study rooms. Figure 2 depicts the flow of data from
the cameras, through the processing server, and to the end-
user devices, with a database to server as a data buffer.
CrowdVision uses hardware to capture images from a study
room, which will be sent to our processing server using Wi-Fi.
Our processing server will use Computer Vision to analyze the
image and extract data from it, such as the time it was taken
and the amount of people detected in the image. The server
delete the image after it’s been analyzed and will store that
extracted data into our database. Students will be able to view
the extracted data in real time through our web application.

Fig. 1. High-Level Diagram of our Integrated Hardware and Software

IV. METHODS - HARDWARE

While our project is software heavy, we needed a device
to capture the state of the study rooms we are analyzing. In
order to do this we made use of a Raspberry Pi 3B+ and
a camera module to take and send photos to our server for
processing. We chose the Raspberry Pi 3B+ due to its internet
connectability, remote access, and support available for trou-
bleshooting. Our Raspberry pi operates on the default provided
Raspberry Pi operating system called Rasbian. Rasbian allows
us to work with the Pi as if it were a normal desktop computer
and allows easy remote access. However, despite the ease of
remote access, we still had numerous issues on this front. In
order to remote into the Pi, the IP address must be known.
Whenever we connect the Pi to the university Wi-Fi, its IP
changes due to there being several routers to connect to. To



2

overcome this, we decided to use a direct ethernet connection.
We did this by purchasing an ethernet to USB converter so
that we can set up an SSH from a laptop. Next, we found that
Rasbian has supported camera functionality so we were able
to take photos and gather data using just a simple command
in the command prompt. From here we plan to make a script
that will control the camera to take a photo every few minutes
in order to accurately gather data from the rooms. In our final
project design, we plan to immediately delete any image taken
after analysis of the photo is completed.

Fig. 2. Our Raspberry Pi 3 Module with the Serial Camera

V. METHODS - SOFTWARE

A. Client-Server Interaction

In order to send the images from the Raspberry Pi to
the server it was important to establish a protocol to ensure
that the server would be able to receive the information and
make sense of it. Thus, we decided to go with an API style
of communication with the image being sent as an encoded
parameter. This architecture allows the client side to be very
flexible. The same software can be run on a variety of different
platforms. In addition, the decision to split the software into a
client and server side allows the information to be abstracted
where it is irrelevant. The client does not need to know the
specifics of how the image processing takes place, and the
server does not need to know the specifics of how the image
was taken. Figure 2 shows a high level overview of how our
software and hardware components interact in CrowdVision.

B. Image Processing Strategy

Once the image has been received by the server, the majority
of the computation takes place. In order to process the images
and count the number of people present, it was necessary
to choose an appropriate computer vision implementation.
Recent breakthroughs have shown deep learning approaches
outperform more traditional computer vision algorithms [3],
leading us to look at a variety of libraries that implement
these new techniques. We considered OpenCV, Facebook’s

Detectron2 [4], and SimpleCV. Our need for accurate detec-
tion at a variety of angles and distances made Detectron2
a clear winner. The underlying model that Detectron2 uses
is a Mask R-CNN [5], a state-of-the-art model for object
instance segmentation. Results using models in OpenCV and
SimpleCV were inconsistent and had many false negatives.
Since accuracy was a key factor for the project, we decided
to go with Detectron2.

However, there were still issues with Detectron2 that took
time to resolve. First, since it is a relatively new library, there
were not many resources that we could refer to, leaving us on
our own for the most part with any troubleshooting issues we
had. This was problematic, as our system exceeded the free
plan memory limits that Heroku offers, forcing us to explore
other hosting options. We decided to move to Microsoft’s
Azure, yet are still having issues getting our model deployed
because of compatibility issues with the library dependencies
needed for Detectron2. As a current workaround, we are using
a local server that we publicly expose using ngrok.

C. Database Schema

In order to allow our data to be queried by our web page
(see below), it was necessary to introduce a middleman to
handle the data. In our case, we decided to introduce a database
to manage the data and organize it coherently. To host our
database, we decided to use an Azure SQL database that
will allow our database to be accessible from anywhere. An
advantage of using Azure for this is that it handles scaling
issues, as well as any security issues that could arise from
hosting data in the cloud.

Once the web server has finished processing an image, it
aggregates relevant information about that image, such as the
room name, occupancy of the room, date of creation, etc. The
database schema is illustrated in more detail in Figure 3.

Fig. 3. Database schema used to store room information such as occupancy

D. Front-end Web Page

A key component of CrowdVision is allowing the processed
data to be easily seen by the end consumer. To achieve this,
we developed a web application that would query the data
available in the database and display it in a convenient man-
ner. There were multiple options for front-end development,
including React, Angular, and .NET Core. However, due to
our team being more experienced in .NET Core, we decided
to go with that option to reduce the learning time needed to
begin development.



3

In addition, due to the split in front-end and backend, there
is no need for the web application to know anything about the
image processing or the hardware components. This allows
the code to be relatively simple, with the majority of the code
being dedicated to the UI components rather than calculations.
Since the data is already preprocessed, the web application
can simply connect to the database and query it, with the data
being appropriately organized by the server.

For future work, we would also like to use collected data
over time to make predictions about occupancy of popular
study rooms throughout the day.

VI. RESULTS AND PERFORMANCE

First, we were able to successfully take a JPEG image,
send it to an exposed local web server, and give a response
back that includes an accurate number of people in the image.
With respect to performance, the POST request to the server
happens very fast, however the image processing is currently
the main bottleneck, taking several seconds to perform the
instance segmentation. We do however note that this is not
necessarily a problem in our final application, as we only plan
on taking a picture of the room about every minute. Finally,
with regards to the front-end web page, we have developed an
initial UI that users will be able to browse to find available
study rooms. Performance is currently very fast since data is
limited and we currently do not have any real users, but once
we acquire more data and gain more users, we may have to
look into scalable options for our web app. In addition, once
we need to use multiple systems to report on multiple different
rooms, we need to make sure that our architecture can support
this growth.

VII. SUMMARY

Students currently don’t have a way to find information
about the occupancy of study rooms on campus. CrowdVision
tackles this problem by detecting the number students in study
rooms using a Raspberry Pi and Facebook’s Detectron2. We
are currently able to take the picture and get an accurate count
of the number of people in it. Furthermore, we also have the
Raspberry Pi setup, as well as a mock web page that shows
the front-end of how our fully functioning web app will look
in the future.

VIII. CONCLUSION

Even though we have achieved some major milestones, our
project has some important future work to be done. Firstly, we
would like to integrate the Pi, server, database, and front-end
into one fully functioning system. Once this is done, we can
start testing our system and add additional features to the web
page, such as showing plots of when study rooms are typically
available. We hope that, once finished, CrowdVision can serve
as a useful tool for students to conveniently find study rooms
on campus.

IX. ACKNOWLEDGEMENTS

This project was funded from the University of California,
Irvine senior design course (EECS 159A) which is an ABET
approved course. The equipment purchased for crowdvision
was sources from Adafruit and Facebook’s Detectron2 library.
CrowdVision would like to acknowledge Professor Stuart
Kleinfelder for advising this project throughout the quarter.
CrowdVision would also like to acknowledge the senior design
group CSEEE, Gianna Mascardo, Wesley Bellin, Dylan Agi-
man, and Jens Tuyls, for all of their dedication and continuing
efforts towards this project.

APPENDIX A
TECHNICAL STANDARDS

CrowdVision follows many technical standards, including
the Ethernet standard, micro SD card standard, USB standard,
Wi-Fi standard, and JPEG file format standard. We chose
these standards because it made it easier to gather compatible
materials and ensuring connectivity between our software
(processor) and our hardware (Raspberry Pi 3 Model B+).
The Raspberry Pi 3 Model B+ was designed to be compliant
with these common standards to account for universal usability
withing various types of projects - such as the Ethernet stan-
dard, micro SD card standard, USB standard, Wi-Fi standard.

APPENDIX B
CONSTRAINTS

CrowdVision faces many constraints, including ergonomic
difficulties, legal considerations, and policy and regulatory
issues.

Since CrowdVision is meant to be mounted in a room in
order to gather images, it is important to design the device in
a way that would allow it to be mounted with no damage to
the device itself. To accomplish this, we purchased a case for
our Pi that will allow it to be mounted with ease. Since the
actual PCB and ports are not externally exposed, we should be
able to mount the Pi by any means necessary, while mitigating
damage to the device.

In addition, CrowdVision’s application is in university
environment, meaning that one of our responsibilities and
constraints is to abide by UCI’s public filming policies.
The UC Irvine Administrative Policy Sec. 900-30: Policy on
Filming and Photography on the UC Irvine Campus states
that, “filming and photography are permitted on the UC Irvine
campus and on property leased by the campus” [6]. While we
are allowed to film on campus, there are some constraints for
legal considerations, as well as policy and regulatory issues.

CrowdVision is restricted in the placement of our project by
the university’s public filming policy. We must ensure that our
project “does not interfere with regular educational, research
or outreach functions or previously scheduled events of the
University and does not pose a security, health or safety risk”
[6]. This constraint deals with ergonomic difficulties since
we must ensure that our project does not interfere with an
individual’s normal activity. Our current workaround to this
constraint is placing our Raspberry Pi v3 module and camera
in an imperceptible area of a study room to minimize the
possible distraction it may cause.



4

APPENDIX C
HARDWARE AND SOFTWARE SECURITY

Security was a key consideration for our project, as it is
mostly internet-based, which introduces greater risks. In order
to minimize the amount of personal information that is stored
on our servers, we do not store any of the images that are
processed by CrowdVision. Once the image has been analyzed
and the number of people has been extracted, the image is
immediately deleted. CrowdVision never stores images in the
cloud. It only stores numbers, which is extracted processed
data. In addition, since our project is set up in a modular
manner, there is a minimal amount of information that is
stored at any one location. As such, even if our web page is
compromised, our server will still stay secure, and vice versa.

In the future, there are other steps we can take to ensure
that our project is even less vulnerable to hacking or loss of
personal information. For example, when sending the image
over the internet, we can employ an encryption scheme to
ensure that even if the image is intercepted, none of the
information will be compromised. Another option for greater
security is to blur out the faces of individuals locally before
we send the image to the server. However, for this option we
would have to run tests to ensure that this will not make our
image processing less accurate. If blurring faces is possible,
it will add another layer of security, ensuring that even if the
image is intercepted and decoded, the individuals will not be
able to be identified by the hacker.

ACKNOWLEDGMENT

This project was funded from the University of Califor-
nia, Irvine senior design course (EECS 159A) which is an
ABET approved course. CrowdVision would like to thank
and acknowledge Professor Stuart Kleinfelder for advising this
project throughout the quarter.

REFERENCES

[1] Morerio, Pietro, et al. People Count Estimation In Small Crowds. 2012
IEEE Ninth International Conference on Advanced Video and Signal-
Based Surveillance, 2012, doi:10.1109/avss.2012.88.

[2] J.W. Choi, X. Quan, and S.H. Cho, Bi-Directional Passing People
Counting System Based on IR-UWB Radar Sensors, IEEE Internet of
Things Journal, vol. 5, no. 2, pp. 512–522, 2018.

[3] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, Advances in neural information
processing systems, 2012.

[4] Yuxin Wu, Alexander Kirillov Francisco Massa,
Wan-Yen Lo, and Ross Girshick. 2019. Detectron2.
https://github.com/facebookresearch/detectron2

[5] K. He, G. Gkioxari, P. Dollar, R. Girshick. Mask R-CNN. CoRR, 2017.
[6] Sec. 900-30: Policy on Filming and Photography on the UC

Irvine Campus: Policies & Procedures: UCI, Policies & Procedures.
[Online]. Available: http://www.policies.uci.edu/policies/pols/900-30.php.
[Accessed: 14-Nov-2019].


