
Efficient Deep Racing via Environmental Constraining
Ki Young Bang, Brandon Lam, Jeffery Tsz Hang Wong, Leo Jingtao Zhang

Pooria M. Yaghini
Department of Electronic Engineering and Computer Science

Background
● Autonomous vehicles have grown increasingly complex and

resource intensive.
● Autonomous vehicles today take inputs from numerous

sensors and can handle events such as loss of traction, poor
visibility, and pedestrian avoidance.

● The standard for decent performance has increased
dramatically.

● It has been practically accepted that systems outside of the
range of thousands of dollars can not come close to today’s
standard of performance.

References
Togelius, Julian, et al. Computational Intelligence in Racing
Games. Computational Intelligence in Racing Games,
Springer-Verlag Berlin Heidelberg, 2007.
“Nintendo Gamecube Controller Protocol.” Nintendo Gamecube
Controller Pinout, 8 Mar. 2004,
www.int03.co.uk/crema/hardware/gamecube/gc-control.html.

Create a cost-efficient yet high-performance autonomous
driving system by constraining the number of variables by
using a controlled environment; Mario Kart is one of such
possible domains. This provides three benefits:

1. Raw images are inputted directly through HDMI,
bypassing sensor issues.

2. A limited number of unique obstacles reduces the
complexity for object detection.

3. Controller inputs create deterministic movement,
avoiding the need to handle details such traction and
gear changes

Project Goal

System Description/Materials
There system requires 4 components:

1. Processing element for vision
2. Interface to emulate controller input
3. Processing element for decisions
4. Processing element for trajectory planning

We will use a distributed system consisting of a
Zynq-7000 SoC and Coral Devboard connected over
gigabit ethernet. The Zynq provides a traditional CPU and
an FPGA which we can use as the CNN encoder/image
classification (1) and provide output controller signals
using the gamecube controller protocol (2). Encoded
images are sent to the Coral Dev Board over gigabit
ethernet which will perform RNN decoding (3 & 4).

Future Tasks
● Hardware

○ Accelerate the neural networks
○ Test controller simulation with real hardware

● Software
○ Implement TVM+VTA stack and PYNQ for CNN

encoding
○ Further enhance the lane detection algorithm
○ Develop path/trajectory planning

Block Diagram

Quarterly Accomplishments
● Hardware

○ Learned to program and deploy code on SoC
○ Circuit designed for FPGA controller output logic &

PCB
○ FPGA programming server has been setup
○ Finalized hardware system design

● Software
○ Developed a curved lane detection

■ Captures a laptop screen and detects the lane lines
from a footage in real time

○ Challenge: calculate an accurate numerical value of
instantaneous curvature for trajectory planning

Timeline/Milestones
● Quarter 1

○ Week 1~4: Become familiar with libraries, core,
methodologies,etc

○ Week 5~7: Hardware/Software development
○ Week 8~9: Integration/Debugging
○ Week 10: First prototype

● Quarter 2
○ Week 1~5: Improve the driving algorithm
○ Week 6~8: Final debugging
○ Week 8~10: Final prototype
○ Ongoing: Collect training data

Software Demo

