Team#2 2 Early 2 Submit Things

Validation of airfoil simulation in Xfoil

Summary
- Xfoil, developed by MIT, is a software designed to forecast the lift and drag forces acting on airfoils under conditions of low Reynolds numbers and minimal angles of attack.
- Our team aims to assess the effectiveness and precision of Xfoil. If validated, Xfoil could swiftly and accurately generate results mirroring actual flow conditions.
- Verification entails comparing Xfoil predictions with the forces experienced by a flat plate solved through the Blasius solution.
- Validation will be conducted by contrasting Xfoil outputs with data obtained from experiments conducted in the UCI wind tunnel, employing a tangible airfoil model.

Key features

Airfoil selection
- Use aerodynamic theories to analyze the most influential factor in the variable we are going to focus on. In our project, lift coefficient and drag coefficient are the significant variables for validation, and they are most related to the degree of camber line of the airfoil. Therefore, our airfoil selection emphasize on varying the camber degree.

Xfoil verification
- Test the precision and accuracy of the result from Xfoil in different panels
- Create a log scale plot to show the error between Joukowsky theoretical value and the simulated value
- Figure out the best panel setting for the Xfoil

Wind tunnel selection
- Contact professor and graduate students on campus to check the availability of wind tunnel
- Compare the wind tunnel to see which will be more appropriate for our project, considering the following specifications: Size of Test Section, Velocity Range, Angles of Attack, Ease of Mounting, Ambient Conditions, and Accuracy.

Method
- We summarize and understand the data through mean, median, mode, range, variance, standard deviation and graphs.

Analysis and conclusion
- Through the cambered Joukowski aerofoil formula and symmetrical Joukowski aerofoil formula, we can find that the lift coefficient varies with different degrees of the camber for cambered airfoil. Furthermore, through the induced drag (dominant drag of airfoil in airflow) coefficient, CDi=CL^2/(pi*AR), we can find that the drag coefficient is related to the CL. Thus, the camber factor is basically the dominant factor we need to consider in the project, as we are going to collect the data of lift coefficient and drag coefficient.

Analysis and conclusion (continued)
- Assessment of available wind tunnel leads us to wind tunnels shown.
- Decrease in percent error with an increasing number of panels

Key features

Airfoil selection
- Use aerodynamic theories to analyze the most influential factor in the variable we are going to focus on. In our project, lift coefficient and drag coefficient are the significant variables for validation, and they are most related to the degree of camber line of the airfoil. Therefore, our airfoil selection emphasize on varying the camber degree.

Xfoil verification
- Test the precision and accuracy of the result from Xfoil in different panels
- Create a log scale plot to show the error between Joukowsky theoretical value and the simulated value
- Figure out the best panel setting for the Xfoil

Wind tunnel selection
- Contact professor and graduate students on campus to check the availability of wind tunnel
- Compare the wind tunnel to see which will be more appropriate for our project, considering the following specifications: Size of Test Section, Velocity Range, Angles of Attack, Ease of Mounting, Ambient Conditions, and Accuracy.

Method
- We summarize and understand the data through mean, median, mode, range, variance, standard deviation and graphs.

Analysis and conclusion
- Through the cambered Joukowski aerofoil formula and symmetrical Joukowski aerofoil formula, we can find that the lift coefficient varies with different degrees of the camber for cambered airfoil. Furthermore, through the induced drag (dominant drag of airfoil in airflow) coefficient, CDi=CL^2/(pi*AR), we can find that the drag coefficient is related to the CL. Thus, the camber factor is basically the dominant factor we need to consider in the project, as we are going to collect the data of lift coefficient and drag coefficient.

Analysis and conclusion (continued)
- Assessment of available wind tunnel leads us to wind tunnels shown.
- Decrease in percent error with an increasing number of panels

References and Acknowledgements
- We’d like to thank the following for the input and supervision that enable experimentation with the wind tunnel
 ○ Kshitij Anand
 ○ Abdelrahman Amr Abdelaziz Elmaradny

NACA 0012
NACA 4412

<table>
<thead>
<tr>
<th>Maximum Camber</th>
<th>0%</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
<td>300mm</td>
<td>300mm</td>
</tr>
<tr>
<td>Chord</td>
<td>15mm</td>
<td>15mm</td>
</tr>
</tbody>
</table>