Snackbot

Oscar Diaz Nausir Firas Colby Henderson Jainam Vasa Advisor: Moatasem Fouda

Problem Definition and Team Objectives

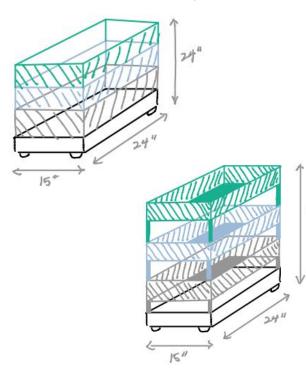
Human interaction within the movie theater must be significantly reduced in response to the **Covid-19 pandemic** in order for theaters to survive. Eliminating the portion of the movie theater experience in which customers are lined up to order snacks and drinks at the concession stand is necessary for adhering to CDC guidelines.

We must **design a robot that** will solve this issue by delivering orders to customers while they are inside the theater, reducing human interaction.

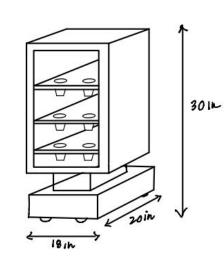
Our team will work together to design all mechanical aspects of the robot to satisfy every necessary design attribute.

It should also be noted that this robot is meant not for movie theaters as they currently are, but for the future **Covid-friendly theater that is being designed by the Engineering Conference team.

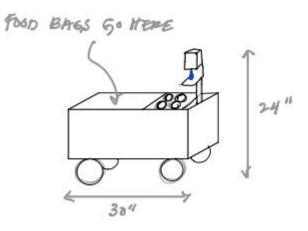
Design Attributes and Requirements


Attribute	Importance (1-5)	Units	Min Value	Ideal Value	Max Value	Description
Height must be low enough to not block theater screen	5	mm	575	610	760	Guests must not be disturbed by robot moving through aisles
Should dispense sanitizer (dose)	3	ml	.4	.6	.9	Sanitization will prevent germ propagation from guests to the robot while snacks are being grabbed
Must climb slight incline without tipping	5	degre es	5	7	12	Traveling through individual theaters requires ascending/descending ramps to reach every aisle
Must be able to turn	5	degre es	10	90	90	Following paths will require steering
Must have low center of gravity	4	N/A	N/A	N/A	N/A	Tipping could result in possible disaster. If heavy items are on top, robot is more prone to tipping and falling

Attribute	Importance (1-5)	Units	Min Value	Ideal Value	Max Value	Description
Can't be too loud to interfere with movie	4	dB	30	40	50	A loud robot will distract from the movie
Should be relatively simple to manufacture	3	N/A	N/A	N/A	N/A	To produce multiple robots per theater, a simple manufacturing plan will keep costs low as most theaters are already short on money
Must be reliable (endurance time)	4	hr	2	10	15	If guests do not receive orders due to faulty or slow robots, they will be angry and theater will lose future business as customers will file complaints
Must carry both snacks and drinks	5	N/A	N/A	N/A	N/A	Customers will order whatever the concession stands normally offer including both drinks and snacks
Must carry adequate weight	5	kg	20	30	50	Drinks and snacks all have different weights and any combination of them will result in a different weight. Max load capacity should be sufficient to satisfy any order.

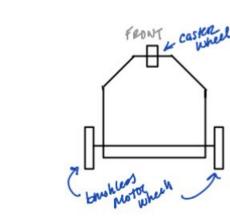

Concept Designs: Chassis

28 "

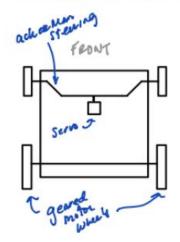

Stackable Trays

Removable Trays (Drinks on trays)

Wagon Style


Jainam Vasa

Concept Designs: Wheel Hub and Motor


2 brushless motor wheels for the back + 2 castor wheels in front

FRONT

2 brushless motors wheels for the back + 1 castor wheel in the front

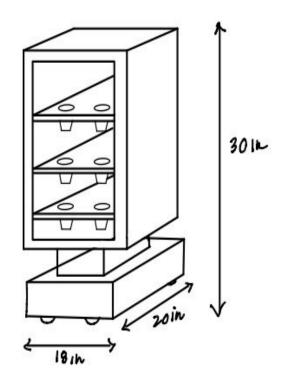
2 Geared motors wheels for the back and a servo motor for 2 wheels in the front

Final Design Justification

Chassis:

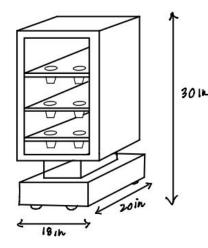
- A hard and robust base for the robot.
- Compartmentalized structures with removable trays
- Sanitizer dispenser on either side
- A screen at the top to display order number

Sizing:


• 30 inches tall, 18 inches wide and 20 inches deep.

Steering:

- 2 brushless motor wheels at the back
- 2 passive castor wheels in the front
- Cost effective and can be easily purchased


Material Selection :

- Aluminium 6061 -T6 for the overall chassis
- High Ultimate Tensile Strength of 315 MPa
- HDPE for removable trays
- Ultimate Tensile Strength of about 10-45 MPa

Concept Selection: Proposed Design

Our team selected a chassis with a strong and robust base and a set of removable trays on the top, guarded by acrylic doors.

		-		
sis	Strengths	Weaknesses	Opportunities	Threats
p,	Walls surrounding trays provides protection as well as optional additions (i.e. screens).	Robot proportions could cause issues with center of gravity , decreasing stability.	Could end up being used for other areas , not just delivering food inside theaters. (hospitals, factories, etc.)	If robot isn't strong/stable enough, accidents could ruin a movie experience for a customer.
1	Removable trays decrease germ propagation .	Large orders could slow down delivery time as trays are limited.	Could make delivering snacks more sophisticated due to automation.	A shortage of trays for any reason makes the robot essentially useless.
L	Optional doors provide extra protection.	Door could increase germ propagation if customers do not properly sanitize .		May cause snack/drink sales to decrease, as customers are more likely to buy things if they see it in front of them.
	Robot body provides option for added lights for customers to easily find their orders.	Needing to make base of the robot heavy could add to overall cost due to extra material.		
			-	Jainam Vasa

Detailed Schedule

		Week 6	Week 8	Week 9	Week 10		Week 11
	Projects	2/7/21	2/22/21	3/3/21	3/8/21	3/14/21	3/19/21
Projects	Final Presentation						
Ch 1	Design Review Setup						
Ch 2	Design Review						
Ch 3	Final Report						
Ch 4	Detailed Analysis/Testing		Begin (if possible)		cont.		
Ch 5	BOM		First Draft		Final Draft		
Excess	Assembly Drawings		First Draft		Final Draft		
	Prototype Plan		First Draft		Final Draft		
	Prototype Risk Assessment		First Draft		Final Draft		
	Updated Cost Estimates		First Draft		Final Draft		
	Design Verification		First Draft		Final Draft		
	Prototype Verification		First Draft			Final Draft	
	Final Design Description		First Draft			Final Draft	
	Safety/Risk Assessment		First Draft			Final Draft	
	Summary					First Draft	
	Future Designs					First Draft	
	Lessons Learned					First Draft	
	Conclusions					First Draft	
	Complete Report						

Concerns

- Best way to make the base heavy to **improve stability without increasing overall cost**.
- How to test if our robot will be stable holding maximum load up an incline.
- **Best materials** for each part (cost effective, reliable, etc.).
- How to correctly **machine** each aspect of the robot.
- How to avoid any issues if **accidents** happen, like a drink spills all over the robot.



Future Tasks

Oscar: Will join Colby to work on steering and wheel hub

Nausir: Will join Jainam to work on Chassis/body

Analysis/testing will be team effort once SolidWorks model comes together

