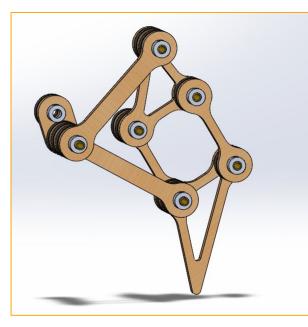


Team Sky Bison

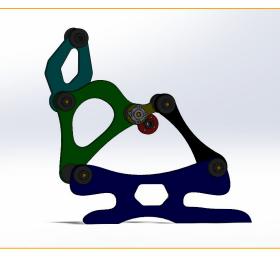
Project: Steerable Walker 2021 Members: Jack Altman, Linda Chea, Steven Young Sponsor: Dr. Michael McCarthy Advisor: Kevin Chen

Problem Definition and Project Overview

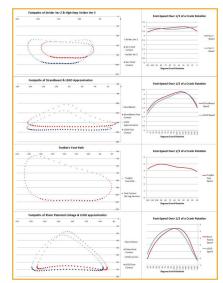
Goal: Design, construct, and evaluate the performance of a six-legged steerable walking machine.


Design Attributes & Requirements:

- 1. Minimally actuated with 2-4 actuators: one motor for locomotion & second motor for steering
- 2. Six-legged
- 3. Controlled wirelessly
- 4. Steerable (Steering angle of 25 degrees)
- 5. Walk speed of 1.5 feet per second
- 6. Chassis made of Baltic Birch
- 7. All components are within the required dimension of 15"x30" for manufacturing

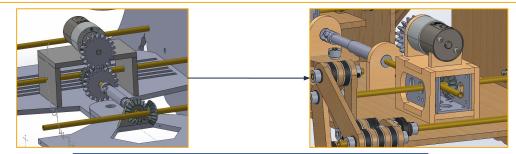


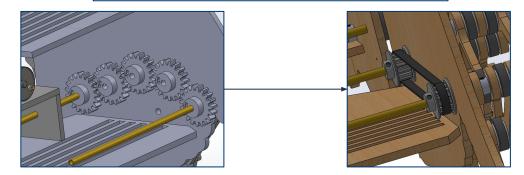
Leg Mechanisms


Jansen Leg

Rectilinear

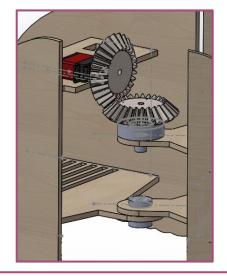
Others (Footpaths and Foot Speed Comparison)

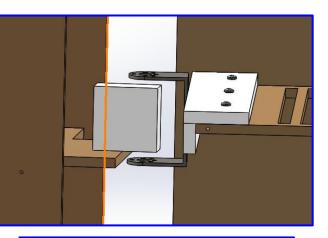

Source: DIY Walkers

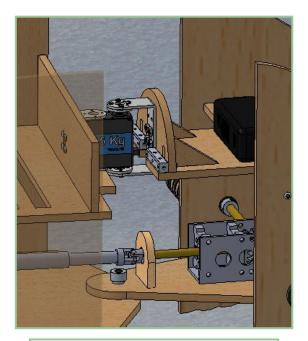


Walking Drivetrain

Gearbox & Power Transmission to Middle and Front Legs


Power Transmission to Rear Legs

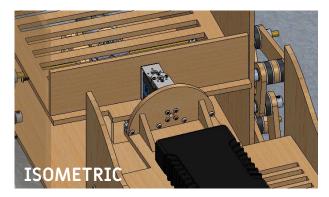


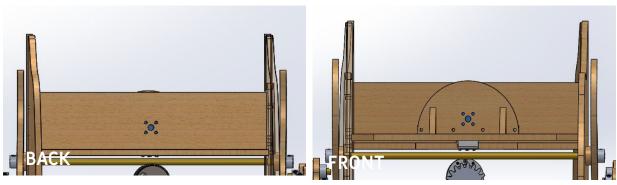

Steering Drivetrain Designs

Design #1: Servo motor with spiral bevel gears

Design #2: Servo motor with 3D printed mount

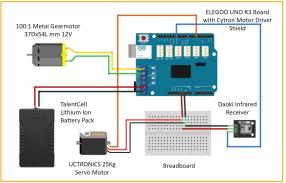
Design #3: Servo motor with nut strips and laser cut support members

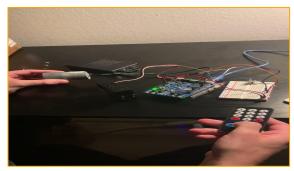


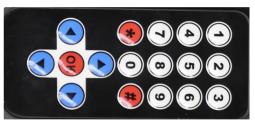


Steering Drivetrain Final Design

Design Justification:


- The final design is an adopted and improved concept of design #2.
- Avoid using 3D printed parts for mount
- Additional support members to distribute loads when turning
- Easy to adjust for front and rear segment spacing




Control Electronics

Schematic of control electronics generated with Fritzing software

Electronics test demonstration

IR Remote / Transmitter

	Command	IR Remote Key	
DC Motor	Stop Motor	0 Key	
Controls	Full Speed Forward	Up-Arrow Key	
	Full Speed Backward	Down-Arrow Key	
	Half Speed Forward	2 Key	
	Half Speed Backward	5 key	
Servo Motor	Straight	OK Key	
Controls	Right Turn	Right-Arrow Key	
	Left Turn	Left-Arrow Key	

7

Turning Radius Motion Studies

Leg Mechanisms Spacing

6-16 Ratio

6-19 Ratio

Rear

Steering Axis Placement

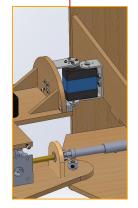
Top: 6-Wheel car with rear wheels spaced close together; basis for current steering design.

Bottom: Motion Analysis turning radius simulation of final design.

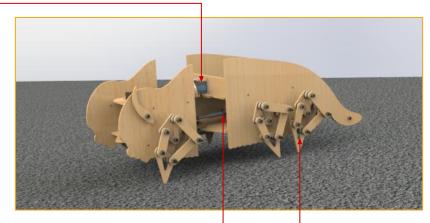
6-26 Ratio

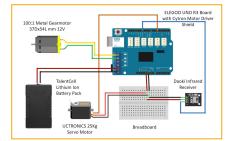
Front

Turning Radius Motion Study Results						
Steering Axis Location	Leg Mechanism Spacing					
	6:16	6:19	6:26			
Original	n/a	8.7 feet	11.6 feet			
Front	n/a	7.2 feet	9.3 feet			
Centered	n/a	6.1 feet	6.2 feet			

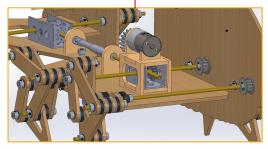

Verification of Requirements

Requirement	C/NC (compliant / non-compliant)	Verification	Notes
1) Minimally Actuated	С	Control electronics schematic / Solidworks model	One motor is used for locomotion and one servo motor is used for steering
2) Walker must be six-legged	С	Solidworks model	
3) Steerable (with turning radius of 6 feet)	NC	Solidworks motion study / Hardware performance review	Servo cannot generate enough torque to move front segment
4) Wireless control of locomotion and steering	С	Control electronics schematic	Controlled by IR transmitter and receiver.
5) Walk speed greater than 1.5 ft/s	NC	Physical model	Motor cannot provide enough torque to walk on ground; drivetrain gears slip
6) Chassis constructed from Baltic Birch wood	С	Photograph of hardware	
7) All components are within the required dimension of 15" by 30" for manufacturing	С	DXF files for laser cutting	The laser cutter bed size is 18" by 30"

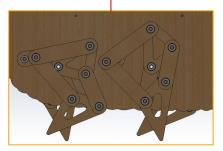




Final Design Description



Steering Drivetrain



Control Electronics Schematic

Walking Drivetrain

Leg Mechanisms

Hardware Performance Demo

Risk Assessments (Rating 1-5) 1=least, 5=most

Risk Item	Effect	Cause	Likelihood	Severity	Importance	Action to Minimize Risk
DC motor failure	Wearing on legs, chassis, or drivetrain parts	Overload: overall walker is too heavy	4	4	5	Reduce material used, cut out more solid wood parts
Universal Drive Shaft locking	component might break, retraction and snapping	over extending (for very sharp turns than design is intended for)	1	3	5	Test how far universal drive shaft extend when at max turning radius
Loosen parts (i.e. shaft collars)	brass tube slips out of positions, assembly misaligned	movements that causes vibration throughout all parts (shear, torque, loading forces)	4	3	4	regular tightening maintenance before operating walker
Servo motor failure	failure to turn	front segment too heavy, servo motor mount becomes loose	4	3	5	steering testing using SolidWorks, electronic testing

Remaining Questions and Concerns / Recommendations for Future

- How can we implement minimally actuated robots into society as additional helping hands?
- With only one motor for locomotion and a second motor for steering, how many legs can we add before the walker fails to function/move/turn?

Recommendations

- Implement a system to have a walking and steering drivetrain that can be easily integrated into a chassis (Work backward? Drivetrain first, then chassis?) Before starting motion analysis stage, reduce the amount of redundancy in SolidWorks model (Group into subassemblies) Build physical prototypes of essential mechanisms before assembling full design prototype; check to make sure mechanisms behave as expected Consider 3-segmented body for future designs (for sharper turning)