Methane Hydrate Combustion

Project Advisors:
Derek Dunn-Rankin
Alice Chien

Customer:
Navid Saeidi

Team Leads:
Patricia Martinez
Dania Alfeerawi

Resources:
W.M. Keck Foundation Deep-Ocean Laboratory
Robinson Ramos

- **Methane Hydrates** are molecules of methane (CH4) bound within a crystal lattice of ice (H2O) created under high pressure & low temperature.
- Little is known about Methane Hydrate’s natural state including its properties combustion characteristics.
- Methane hydrates have been discovered in marine sediments and under shallow permafrost deposits in arctic regions where these conditions are ideal.
- University of Texas estimate total Methane Hydrate in the world would supply ~250 years worth of natural gas.
- Research Labs around the world are studying various methods of extraction.
- W.M. Keck Foundation Deep-Ocean Laboratory is studying Methane Hydrate combustion and burning characteristics but requires a facility with ideal conditions to obtain accurate results.

Team Members:
Michael Hu
Manuel Cardoso

Resources:
- W.M. Keck Foundation Deep-Ocean Laboratory
- Methane hydrate combustion and burning characteristics

Design Specifications and Parameters determined
- Simulations made
- Materials and equipment selected

Fall

- Design specifications and parameters determined
- Simulations made
- Materials and equipment selected

Winter

- Facility manufactured and fabricated by the end of winter quarter
- Testing of facility through Methane Hydrate Combustion

Spring

- Testing of facility through Methane Hydrate Combustion
- Prototype ready to present

Winter 2019 Budget

- Systems: 2.1%
- Emissions: 4.3%
- Mass Loss: 44.7%
- Airflow: 48.9%

Note: Most of the necessary material can be found in the W.M Keck Foundation Deep Ocean Science Library, thus the budget is dedicated to replacements of existing instruments.

Winter 2019 Progress

- Formal design with dimensioned Solidworks models
- Down selection of equipment needed to build entire combustion chamber.

Complete

- Fabrication of combustion facility by combining and integrating airflow system, emissions system, and mass loss system.

In Progress 75%

- Testing airflow in the combustion chamber to validate one air inlet as most optimal option for emissions readings
- Identifying design problems and initiating plan of action for design modification in spring 2019

Methane Combustion

Manuel Cardoso with Methane Hydrate