

MAE 189 Capstone Design Midterm Report

Rocket Active Fins Team#7

Project Overview

Problem Definition: During rocket launches, rockets can become unstable due to things like wind gusts, changes in center of gravity due to fuel, and manufacturing mistakes.

Objectives: The Active AntFins project intends to keep the rocket stable and vertical using movable fins.

Project Schedule

Project Schedule

Components:

- Fins: Our control surface that will keep the rocket stable.
- Servos: Will control/move our fins.
- Servo Mounts: How will we attach the servos to our rocket (along with the other components)
- IMU: Determines the rocket's orientation, and it's distance from vertical (error)
- Microcontroller: Will take data from the IMU to determine how much to move each fin.
- Battery: Will power our system.

Major Conceptual Decisions

Angle-of-Attack		Elliptical	Trapezoidal	Square	Rectangular	Clipped Delta
0°	Drag Force	9.508	10.690	9.023	11.337	9.357
5°	Drag Force	12.052	12.262	10.567	11.685	10.907

Detailed Analysis: Control Matrix

$$egin{bmatrix} \ddot{ heta} \ \ddot{\psi} \ \ddot{\phi} \end{bmatrix} =
ho V^2 A_p \pi egin{bmatrix} rac{\Delta dsin(45)}{I_ heta} & rac{-\Delta dcos(15)}{I_ heta} & rac{\Delta dsin(15)}{I_ heta} \ rac{\Delta dcos(45)}{I_\psi} & rac{\Delta dsin(15)}{I_\psi} & rac{-\Delta dcos()15)}{I_\psi} \ rac{r_f}{I_\phi} & rac{r_f}{I_\phi} & rac{r_f}{I_\phi} \end{pmatrix} egin{bmatrix} \delta_1 \ \delta_2 \ \delta_3 \end{bmatrix}$$

Detailed Analysis: Fin Center of Rotation

$$C(y)=rac{1}{b}(L_2-L1)(y-b)+L_1$$
 $MAC=rac{S}{2}\int_0^{rac{b}{2}}C(y)dy$

Aerodynamic center = 0.25*MAC

Detailed Analysis: Battery Capacity

HS-5085MG Servo Specs

- Idle: 3mA

No-Load: 290mA

- Stall: 2150mA

Handle: 20min = 96.7mAh

Flight: 30sec = 17.845mAh

Total Energy = 114.55mAh

Controller	Controller Comparison
PI	PI Controller will have the largest overshoot in controlling the position of the rocket. However, it can use the integral controller to eliminate the steady-state error overtime.
PD	PD controller can provide great performance in damping the oscillations with the quickest response time of the three. Proportional part of the controller may amplify the noise.
PID	 PID controller is a more robust controlling method and includes all the above characteristics. (Kalman filter can be used to optimize the performance)
Bangbang	Controlling the on and off state to yield step response. It is technically easier to design and apply to the active fin but it operates abruptly which is not a great choice for dealing with analog data from IMU.

Dynamic Stability:

Inertia Tensor

$$\begin{bmatrix} \tau x \\ \tau y \\ \tau z \end{bmatrix} = \begin{bmatrix} Ixx & Ixy & Ixz \\ Iyx & Iyy & Iyz \\ Izx & Izy & Izz \end{bmatrix} \times \begin{bmatrix} d\omega x \\ d\omega y \\ d\omega z \end{bmatrix}$$

- Ixx:Moment of Inertia around x-axis w object rotates around x
- Ixy:Moment of Inertia around y axis when objects rotates around x...

Euler Angle Representation

X-Y-Z Zuler Angles

Feedback Gain can be determined use LQZ [linear Quadratic Regulator].

Potential Concern:

• Gimbal Lock at cos(90) due to loss of 1 dof.

Control Matrix

$$\begin{array}{l} \left(\sqrt[3]{A_{f}} \sqrt[3]{\frac{\Delta d_{s} v(s')}{I_{\theta}}} \right)_{S_{1}} - \frac{\Delta d_{s} v(s')}{I_{\theta}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s)}{I_{\theta}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{1}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} - \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{1}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{1}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left(\frac{\Delta d_{s} v(s')}{I_{\phi}} \right)_{S_{2}} + \frac{\Delta d_{s} v(s')}{I_{\phi}} \left$$

$$\begin{bmatrix}
\Delta\theta \\
\Delta\psi \\
\Delta\phi
\end{bmatrix} = \frac{e^{v}A_{f}\bar{\eta}t^{2}}{2} \begin{bmatrix}
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}} & \frac{\Delta de^{i}(qs')}{I_{\Phi}} \\
\frac{\Delta de^{i}(qs)}{I_{\Phi}} & \frac{\Delta de^{i}(qs)}{I_{\Phi}} & -\frac{\Delta d}{I_{\Phi}} \\
\frac{G}{I_{\Phi}} & \frac{G}{I_{\Phi}} & -\frac{G}{I_{\Phi}}
\end{bmatrix}$$

$$\begin{bmatrix}
\theta_{S_{1}} \\
\theta_{S_{2}} \\
\theta_{S_{3}}
\end{bmatrix} = \begin{bmatrix}
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}} & \frac{\Delta de^{i}(qs')}{I_{\Phi}} \\
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}} & \frac{\Delta de^{i}(qs')}{I_{\Phi}}
\end{bmatrix}$$

$$\begin{bmatrix}
\theta_{S_{1}} \\
\theta_{S_{2}} \\
\theta_{S_{3}}
\end{bmatrix} = \begin{bmatrix}
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}} & \frac{\Delta de^{i}(qs')}{I_{\Phi}} \\
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}}
\end{bmatrix}$$

$$\begin{bmatrix}
\theta_{S_{1}} \\
\theta_{S_{2}} \\
\theta_{S_{3}}
\end{bmatrix} = \begin{bmatrix}
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}} & \frac{\Delta de^{i}(qs')}{I_{\Phi}} \\
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}}
\end{bmatrix}$$

$$\begin{bmatrix}
\theta_{S_{1}} \\
\theta_{S_{2}} \\
\theta_{S_{3}}
\end{bmatrix} = \begin{bmatrix}
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}} & \frac{\Delta de^{i}(qs')}{I_{\Phi}} \\
\frac{\Delta de^{i}(qs')}{I_{\Phi}} & -\frac{\Delta de^{i}(qs')}{I_{\Phi}}
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{\partial s} \\
\frac{\partial G}{\partial s}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial G}{$$

MPU 6050

Library: MPU6050_Light

Output: Pitch/Row/Yaw

Alternative way to obtain PRY:

Using raw quaternion data from MPU6050

Mechanical Design Concepts

Individual Work - <Jiawen Bao>

Mechanical Design Concepts

Individual Work - < Jiawen Bao>

Servo Bending Moment

Servo Testing Procedure

Preliminary CAD

Main system concept design

Tail fins

Canards

Comparison between Canards and Tail Fins

	Advantage	Disadvantage
Canards	 Better maneuverability at low angles of attack. More space for the actuation 	Ineffective at high angles of attack because of flow separation that causes the surfaces to stall.
	system and control unit. • Effective in sharp turings	Cause a destabilizing effect and require large fixed tails to keep the rocket stable.
	 Lower drag, higher speed, and longer range. 	 Require high-speed servos and fast responding time to keep the rocket under control.
Tail Fins	Better maneuverability at high angles of attack.	Limited space for the actuation system because of the motor.
	Easy to control.	Might interfere with other parts of the rocket such as motor and centering ring.
		Ineffective in sharp turings

Concept Selection

Fin Location					
Selection Criteria/Category	Weight (%)	Canards	Tail Fins		
Efficiency	20%	4	3		
Complexity	20%	3	4		
Ease of Manufacturing	20%	4	3		
Accuracy	20%	3	4		
Aerodynamic	20%	4	3		
	Total Score	3.6	3.4		

Actuation Mechanism					
Selection Criteria/Categ ory	Weight (%)	Direct Drive	Linkage	Mechanical Mixing	
Cost	5%	5	4	2	
Complexity	30%	5	4	1	
Ease of Manufacturing	15%	5	3	2	
Weight	20%	5	4	1	
Performance	30%	3	5	2	
	Total Score	4.4	4.15	1.5	

- Assuming V=300 m/s, ρ =1.293 kg/m 3 , **a**=10°
 - Drag force on the rocket: 39.4 N
 - Lift force on the rocket: 70.2 N
 - Pitching moment: 34.3 Nm
- Center of pressure calculated using Barrowman method is 89.1 cm from the nose cone tip.

- The fin shape is chosen to be clipped delta, the size is finalized based on the calculations and OpenRocket simulations.
- The aerodynamic center is ¼ back from the leading edge for subsonic airfoils. We'll use this point for our center of rotation to eliminate the problem that CP changes with the angle of attack.

- The canards are placed 40.7cm from the nose cone tip, it will be 3D-printed using ABS, the 3 servos, controller, mpu, etc total weights about 91 grams.
- According to OpenRocket, the stable factor is 1.7, CG is 78.2cm and CP is 89.6cm from the nose cone tip.

OpenRocket Design

- Airfoil shape: Further analysis required (NACA0008 was chosen initially)
- Control Matrix and Sensor Data Processing
- Servo verification
- Fin and Servo Mount Manufacturing
- Coding
- Final OP-order
- Final Prototype assembly

Risks and Areas of Concern

Most of our components will be 3D printed.

Fasteners need to be ordered.

A final PO is needed after we test components bought in the first PO.

Some further guidance might be needed in regards to control equations.