Walking Support for Improved Mobility And Independence

Albert Osongco, Alan Xu, Jorden Castro, Diego Virgen, Tianle Zhu
Sponsor: Professor Alexandra "Sasha" Voloshina

Problem Overview

- Elderly commonly rely on canes or walkers for balance and gait support in response to growing muscle weakness
- However, they force unnatural gait patterns (variability in steppage and stride length) leading to increased vulnerability to falling
 - 1.6%bh for older adults compared to 1.5%bh in younger adults
- Total cost of falls (fatal/nonfatal) adds up $50B (2015)

Mission Statement

Our team aims to create a passive-assistive rehabilitation device for the elderly population to decrease step variability, increase hip/torso movement, and realign thoracic curvature of the spine.

Design Attributes

- Hip Mechanism
 - Rigid structure located around the soft waistband to wrap around the user to the thighs
 - Includes torsion springs which provide a torque of 10 Nm to achieve desired joint angles and step length variability to meet hip joint angle of +/- 75 degrees
 - Limits step length variability to a healthy older adult average of 1.6 +/- 1.1 %body height
- Spinal Attachment
 - Connects rigid torso structures of the device to reach a desired thoracic curvature angle of 30 +/- 10 degrees and lumbar thoracic angle of 33.2 +/- 12.1 degrees
- Semi Rigid Torso Structure
 - Aimed to be manufactured through 3D printing, aimed to include padding for ease of equipment

Calculations

Shear stress of the rigid structure

Length from hip joint to knee joint: 208 mm
Torque: 10 N*m
\[\tau = \frac{F \times A}{L} = \frac{10 \text{ Nm} \times 208 \text{ mm}}{6.5 \times 10^{-5} \text{ mm}^2} \]
=3.2 * 10^6 N

Conclusions and Future Work

In returning to the project for Winter 2023, future work within the first weeks would be to reduce the weight of the device, alleviate rigidity of the torso piece and waist band, and defining an average elderly user of the device for greater compatibility. It would be crucial to also consider the psychological implications of the current device’s design, and work towards simplifying components of the device to promote user friendliness. The design process was a consistent revisional process. In conclusion, application of engineering concepts and engaging in professional design discussions allowed for a challenging, yet rewarding experience, giving a glimpse into work within the industry.

References/Acknowledgements

Project Sponsor Professor Alexandra Voloshina - avoloshi@uci.edu